• Title/Summary/Keyword: Furfural wastewater

Search Result 2, Processing Time 0.017 seconds

Enhancing Anaerobic Digestion of Furfural Wastewater through Magnetite Powder Supplementation (자철석 가루 투입을 통한 푸르푸랄의 혐기성 소화 개선 효과 조사)

  • Seonmin Kang;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2024
  • The effect of magnetite particles on the anaerobic digestion (AD) of furfural wastewater was investigated using sequential anaerobic batch tests. The batch tests with four 500 mL anaerobic bioreactors were performed under two conditions: FC treatment for AD of furfural without magnetite particles, and FM treatment for AD of furfural with magnetite particles. The FC bioreactors showed a decreasing methane production rate (MPR) across the sequential batches, with a final batch MPR of 11.3 ± 0.4 mL CH4/L/d, indicating the need for a methanogenesis enhancer to achieve high-rate AD of furfural. Conversely, FM bioreactors exhibited significantly higher MPR, exceeding FC values by 4-196%, with a final batch MPR of 33.5 ± 0.1 mL CH4/L/d, which was about three times higher than FC. Additionally, FM bioreactors had faster degradation rates of furfural, valeric acid, and acetic acid compared to FC, with values exceeding those in PC by 3.0, 1.14, and 2.8 times, respectively. These results demonstrate that magnetite particles can enhance the AD of furfural not only by accelerating methanogenesis but also by accelerating the anaerobic degradation of furfural and its intermediates, such as volatile fatty acids. This study provides valuable insights for developing high-rate AD systems for furfural wastewater treatment.

Treatment of Food Processing Wastewater bearing Furfural by Candida utilis (Candida utilis를 이용한 furfural 함유 식품가공 폐수의 처리)

  • 박기영;정진영
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.272-276
    • /
    • 2003
  • A yeast treatment process was applied to treat food processing organic wastewater containing inhibitory material to anaerobic bacteria. The wastewater contained high concentration of the furfural as a by-product from the food processing. Aerobic yeast (Candida utilis) was selected to remove organics in wastewater. The batch test showed that the wastewater had an inhibition to anaerobic bacteria. The optimum level of temperature for yeast treatment was ranged from 25 to 45$^{\circ}C$. The pH range from 4 to 8 was favorable to yeast growth. The continuous flow reactor was operated at various SRTs. The results were satisfactory with the reduction of COD up to 90% at SRT of more than 1 day. Through the kinetic study of the yeast, the remained COD concentration was mainly caused by the formation of soluble microbial product (SMP).