• Title/Summary/Keyword: Fungicidal

Search Result 232, Processing Time 0.025 seconds

Structure-Activity Relationships of Fungicidal N-Substituted Phenyl 1,3,5- Trimethylpyrazole-4-carboxamides in the Inhibition of Succinate Dehydrogenase (SDH) Isolated from Rhizoctonia solani $K{\ddot{u}}hn$ (벼 잎집무늬 마름병균 (Rhizoctonia solani $K{\ddot{u}}hn$)에서 분리한 Succinate Dehydrogenase (SDH) 에 대한 N-치환 phenyl 1,3,5-trimethylpyrazole-4-carboxamide 유도체의 효소활성저해)

  • Kim, Yong-Whan
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.447-450
    • /
    • 1997
  • Eighteen N-substituted phenyl 1, 3, 5-trimethylpyrazole-4-carboxamides were synthesized to screen for their mycelial growth inhibition activity against Rhizoctonia solani $K{\ddot{u}}hn$ $(pEC_{50})$ and to measure enzymatic inhibition activity of these compounds $(pI_{50})$ against succinate dehydrogenase (SDH) isolated from Rhizoctonia solani $K{\ddot{u}}hn$ A structure-activity relationship formulated by regression analysis showed that 79% of the variance in mycelial growth inhibition activity can be explained with SDH inhibition activity and chromatographic capacity factor $(\acute{k})$ as a hydrophobic parameter related to the penetration and transport processes in the biological system.

  • PDF

Efficacy of Fluopicolide against Phytophthora capsici Causing Pepper Phytophthora Blight

  • Shin, Jin-Ho;Kim, Joo-Hyung;Kim, Hyung-Jo;Kang, Bumg-Wan;Kim, Kyeong-Tae;Lee, Jeong-Deug;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.367-371
    • /
    • 2010
  • In this study, we evaluated the efficacy of fluopicolide to inhibit Phytophthora capsici in vitro, and to control pepper Phytophthora blight in a greenhouse and pepper fields. Fluopicolide was tested on various developmental stages of P. capsici 06-143 (a sensitive isolate to metalaxyl) and JHAW1-2 (a resistant isolate to metalaxyl). Mycelial growth and zoosporangium germination of both isolates were completely inhibited at $4.0\;{\mu}g/ml$ of the fungicide in vitro. The $EC_{50}$ (effective concentrations reducing 50%) of P. capsici 06-143 against zoospore were $0.219\;{\mu}g/ml$, while those of JHAW1-2 were $3.829\;{\mu}g/ml$. When fluopicolide was applied at 100 and $1,000\;{\mu}g/ml$ 7 days before inoculation with P. capsici 06-143 in the greenhouse test, the disease was controlled completely until 6 days after inoculation. However, the curative effect of fluopicolide was not as much as the protective effect. When fluopicolide was applied by both soil drenching and foliar spraying, the treatments strongly protected pepper against the Phytophthora blight disease. Based on these results, fluopicolide can be a promising candidate for a fungicide to control P. capsici in the pepper fields.

A 90-Day Inhalation Toxicity Study of Ethyl Formate in Rats

  • Lee, Mi Ju;Kim, Hyeon-Yeong
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.333-342
    • /
    • 2017
  • Ethyl formate, a volatile solvent, has insecticidal and fungicidal properties and is suggested as a potential fumigant for stored crop and fruit. Its primary contact route is through the respiratory tract; however, reliable repeated toxicological studies focusing on the inhalation route have not been published to date. Therefore, the present study was conducted to investigate the safety of a 90-day repeated inhalation exposure in rats. Forty male and 40 female rats were exposed to ethyl formate vapor via inhalation at concentrations of 0, 66, 330, and 1,320 ppm for 6 hr/day, 5 days a week for 13 weeks. Clinical signs, body weights, food consumption, urinalysis, hematologic parameters, serum chemistry measurements, organ weights, necropsy, and histopathological findings were compared between the control and ethyl formate-exposed groups. Locomotor activity decreased during exposure and recovered afterward in male and female rats exposed to 1,320 ppm ethyl formate. Body weight and food consumption continuously decreased in both sexes exposed to 1,320 ppm ethyl formate from week 1 or 3 compared with the control values. The increases in adrenal weight and decreases in thymus weight were noted in both sexes exposed to ethyl formate at 1,320 ppm. Degeneration, squamous metaplasia of olfactory epithelium in the nasopharyngeal tissue, or both were noted in the male and female rats at 1,320 ppm and female rats at 330 ppm ethyl formate. Taken together, our results indicate that ethyl formate-induced changes were not observed in male and female rats at 330 and 66 ppm, respectively. This indicates that exposure to ethyl formate at concentrations below 66 ppm for 90 days is relatively safe in rats. This is the first report of a full-scale repeated inhalation toxicity assessment in rats and could contribute to controlling occupational environmental hazards related to ethyl formate.

Bioequivalence of Mycosil Tablet to Lamisil Tablet (Terbinafine 125 mg) (라미실 정(테르비나핀 125 mg)에 대한 미코실 정의 생물학적 동등성)

  • Cho, Hea Young;Park, Hyun Jin;Jeong, Kyung Hee;Cho, Haeng Nam;Moon, Jai Dong;Lee, Yong Bok
    • Korean Journal of Clinical Pharmacy
    • /
    • v.10 no.2
    • /
    • pp.62-67
    • /
    • 2000
  • Terbinafine has a primary fungicidal action mediated by squalene epoxidase inhibition. Treated fungi accumulate squalene while becoming deficient in ergosterol, an essential component of fungal cell membranes. Bioequivalence of two terbinafine tablets, $Lamisil^{TM}$ (Novartis Korea Ltd., Seoul, Korea) and $Mycosil^{TM}$ (Daewon Pharmaceutical Co., Ltd., Seoul, Korea), was evaluated according to the guidelines of Korea Food and Drug Administration (KFDA). Sixteen normal male volunteers ($20\sim29$ years old) were randomly divided into two groups and a randomized $2\times2$ cross-over study was employed. After oral administration of $Mycosil^{TM}\;or\;Lamisil^{TM}$ (125 mg terbinafine), blood samples were taken at predetermined time intervals and the serum terbinafine concentrations were determined using an HPLC method with UV/VIS detector. The pharmacokinetic parameters $(AUC_t,\;C_{max}\;and\;T_{max})$ were calculated and ANOVA was utilized for the statistical analysis. The results showed that the differences in $AUC_t,\;C_{max}\;and\;T_{max}$ between two tablets based on the $Lamisil^{TM}$ tablet were $-2.24\%,\;-7.68\%\;and\;2.92\%$, respectively. The powers %(1-\beta)\;for\;AVC_t,\;C_{max}\;and\;T_{max}\;were\;87.11\%,\;95.36\%\;and\;99.99\%$, respectively. Minimum detectable differences $(\Delta)\;and\;90\%$ confidence intervals were all less than $\pm20\%$. All these parameters met the criteria of KFDA for bioequivalence, indicating that $Mycosil^{TM}$ tablet is bioequivalent to $Lamisil^{TM}$ tablet.

  • PDF

In vitro Study and Clinical Trial of Natural Essential Oils and Extract Against Malassezia Species

  • Lee, Min Young;Na, Eui Young;Yun, Sook Jung;Lee, Seung-Chul;Won, Young Ho;Lee, Jee-Bum
    • Journal of Mycology and Infection
    • /
    • v.23 no.4
    • /
    • pp.91-98
    • /
    • 2018
  • Background: Malassezia, a lipophilic yeast, is a causative agent for dandruff and seborrheic dermatitis. Many biological agents have been studied for anti-Malassezia effect but further studies are needed for their clinical application. Objective: The study was conducted to evaluate the inhibitory effect of different natural essential oils and a fruit extract on Malassezia species in an in vitro study and a clinical trial. Methods: The antifungal effects of natural essential oils and a fruit extract on Malassezia species (M. furfur and M. sympodialis) were evaluated by measuring the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) and using the disc diffusion method. Natural essential oils of citron seed, lavender, and rosemary and citrus junos fruit extract were used for the in vitro study. The clinical trial was conducted with a shampoo containing four ingredients. A total of 22 subjects used the shampoo every day for 4 weeks and were evaluated using clinical photography, trichoscopy, and sebumeter at baseline, 2 weeks, and 4 weeks after treatment. Results: Antifungal activity of agents was relatively lower in lavender and rosemary essential oils at MIC and MFC. Disc diffusion method revealed same results. In the clinical trial, the amount of sebum decreased statistically significantly and erythema, dandruff, and lesion extent also improved. Conclusion: The natural essential oils and fruit extract are effective for suppressing Malassezia activity, therefore these might be used as an alternative for treatment of dandruff and seborrheic dermatitis.

Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment

  • Akamatsu, Hajime;Kato, Masayasu;Ochi, Sunao;Mimuro, Genki;Matsuoka, Jun-ichi;Takahashi, Mami
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.219-233
    • /
    • 2019
  • Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.

The Water-Soluble Chitosan Derivative, N-Methylene Phosphonic Chitosan, Is an Effective Fungicide against the Phytopathogen Fusarium eumartii

  • Mesas, Florencia Anabel;Terrile, Maria Cecilia;Silveyra, Maria Ximena;Zuniga, Adriana;Rodriguez, Maria Susana;Casalongue, Claudia Anahi;Mendieta, Julieta Renee
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.533-542
    • /
    • 2021
  • Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. N-Methylene phosphonic chitosan (NMPC) is a water-soluble derivative prepared by adding a phosphonic group to chitosan. This study demonstrates that NMPC has a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii) judged by the inhibition of F. eumartti mycelial growth and spore germination. NMPC affected fungal membrane permeability, reactive oxygen species production, and cell death. Also, this chitosan-derivative exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens to exert fungicide action. In addition to water solubility, the selective biological cytotoxicity of NMPC adds value in its application as an antimicrobial agent in agriculture.

Discovery of Chitin Deacetylase Inhibitors through Structure-Based Virtual Screening and Biological Assays

  • Liu, Yaodong;Ahmed, Sibtain;Fang, Yaowei;Chen, Meng;An, Jia;Yang, Guang;Hou, Xiaoyue;Lu, Jing;Ye, Qinwen;Zhu, Rongjun;Liu, Qitong;Liu, Shu
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.504-513
    • /
    • 2022
  • Chitin deacetylase (CDA) inhibitors were developed as novel antifungal agents because CDA participates in critical fungal physiological and metabolic processes and increases virulence in soil-borne fungal pathogens. However, few CDA inhibitors have been reported. In this study, 150 candidate CDA inhibitors were selected from the commercial Chemdiv compound library through structure-based virtual screening. The top-ranked 25 compounds were further evaluated for biological activity. The compound J075-4187 had an IC50 of 4.24 ± 0.16 µM for AnCDA. Molecular docking calculations predicted that compound J075-4187 binds to the amino acid residues, including active sites (H101, D48). Furthermore, compound J075-4187 inhibited food spoilage fungi and plant pathogenic fungi, with minimum inhibitory concentration (MIC) at 260 ㎍/ml and minimum fungicidal concentration (MFC) at 520 ㎍/ml. Therefore, compound J075-4187 is a good candidate for use in developing antifungal agents for fungi control.

Influence of Seed Dressing with Captan wp. on the Dehiscence of Panax ginseng Seeds (CAPTAN분의소독이 인삼종자의 개갑에 미치는 영향)

  • Lee, J.C.;Chung, Y.R.;Park, H.;Ohh, S.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.2
    • /
    • pp.262-266
    • /
    • 1983
  • Influence of fungi living on the endocarp surface of depulped seeds of Panax ginseng on the dehiscence was investigated with a fungicidal treatment of the seeds and sterilization of the sand at the beginning of stratification. 1. Isolation frequency of the fungi living on the endocarp surface of de-pulped seed was reduced and hardness of the endocarp did not change significantly in seed treated with a fungicide Captan wp. 50%. A significant negative correlation $(r=-0.984^**)$ was found between the frequency of fungi isolation and the hardness of the endocarp. 2. Increase of water content in the seed treated with the fungicide was delayed 20days compared to the untreated. 3. Growth of the embryo and dehiscence of the seed was suppressed by the fungicide treatment. The length of the embryo was inversely proportional to the hardness of the seed. It is suggested that the fungi facilitate the softening of the endocarp thereby enhancing the supply of oxygen and water necessary for the embryo development, therefore, accelerate the growing of embryo and cause the dehiscence.

  • PDF

Identification and Characterization of Diplodia parva and Diplodia crataegicola Causing Black Rot of Chinese Quince

  • Sungmun Kwon;Jungyeon Kim;Younmi Lee;Kotnala Balaraju;Yongho Jeon
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.275-289
    • /
    • 2023
  • Fungal isolates from infected Chinese quince trees were found to cause black rot in Yeongcheon, Gyeongsangbuk Province, Korea. The quince leaves withered and turned reddish-brown and fruits underwent black mummification. To elucidate the cause of these symptoms, the pathogen was isolated from infected leaf and fruit tissues on potato dextrose agar and Levan media. Several fungal colonies forming a fluffy white or dark gray mycelium and two types of fungi forming an aerial white mycelium, growing widely at the edges, were isolated. Microscopic observations, investigation of fungal growth characteristics on various media, and molecular identification using an internal transcribed spacer, β-tubulin, and translation elongation factor 1-α genes were performed. The fungal pathogens were identified as Diplodia parva and Diplodia crataegicola. Pathogenicity tests revealed that the pathogen-inoculated fruits exhibited a layered pattern, turning brown rotting; leaves showed circular brown necrotic lesions. The developed symptoms were similar to those observed in the field. Fungal pathogens were reisolated to fulfill Koch's postulates. Apples were inoculated with fungal pathogens to investigate the host range. Strong pathogenicity was evident in the fruits, with browning and rotting symptoms 3 days after inoculation. To determine pathogen control, a fungicidal sensitivity test was conducted using four registered fungicides. Thiophanate-methyl, propineb, and tebuconazole inhibited the mycelial growth of pathogens. To the best of our knowledge, this is the first report on the isolation and identification of the fungal pathogens D. parva and D. crataegicola from infected fruits and leaves of Chinese quince, causing black rot disease in Korea.