• Title/Summary/Keyword: Fungal nuruk

Search Result 16, Processing Time 0.022 seconds

Analysis of Microbial Diversity in Nuruk Using PCR-DGGE (PCR-DGGE를 이용한 누룩에서의 미생물 다양성 분석)

  • Kwon, Seung-Jik;Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.110-116
    • /
    • 2012
  • Nuruk plays a significant role in the flavor and quality of Takju and Yakju, which are produced through saccharification and alcohol fermentation by various microorganisms. In this study, we identified microbial strains isolated from a plate count and PCR-denaturing gradient gel electrophoresis (DGGE) analysis targeting the 16S and 28S rRNA genes, in order to characterize bacterial and fungal diversity in Sansung Nuruk. The numbers of bacteria and fungi in Nuruk were $1.5{\times}10^9$ CFU/g and $2.2{\tims}10^8$ CFU/g, respectively. The 16S rRNA gene sequence indicated that the predominant bacteria in the isolates and PCR-DGGE profile of Nuruk were Kocuria spp., Pantoea spp., Lactobacillus spp., Pediococcus spp., Weissella spp., Staphylococcus spp., endophytic bacterium, uncultured Gamma-proteobacteria, uncultured Cyanobacteria, and Actinobacteria. Dominant bacteria from the PCR-DGGE profile were Pediococcous pentosaceus and uncultured Cyanobacteria. The 28S rRNA gene sequence indicated the predominant fungi in the isolates and PCR-DGGE profile to be Trichomonascus spp. Pichia spp., Torulaspora spp., Wickerhamomyces spp., Sacharomycopsis spp., Lichtheimia spp., Mucor spp., Rhizopus spp. Aspergillus spp., and Cladosporium spp. Dominant fungi from the PCR-DGGE profile were Pichia kudriavzevii and Aspergillus oryzae. The PCR-DGGE technique was used for the first time in this study to assess a microbial community in Nuruk and proved to be an effective protocol for profiling microbial diversity.

Studies on the Fungal Isolates of Mucorales Collected from Korean Home Made Mejus and Nuluks (한국전통 식품의 원료인 메주와 누룩에서 분리된 접합균에 대한 연구)

  • Yu, Kee-Won;Seoung, Chang-Kun;Lee, Sang-Sun;Yoo, Jin-Young
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.280-292
    • /
    • 1996
  • The fungal isolates of Mucorales, directly collected from Korean traditional raw materials of Nuruk (raw material for Korean rice wine) and Meju (raw material for Korean soysauces), were compared with those of Rhizopus oryzae purchased. The fungal isolates of Rhizopus, Mucor, and Absidia mostly identified as based on the morphological observations, were evaluated with the PCR-polymorphic bands. The PCR-polymorphic bands of the genomic DNA reacted with the primers of OPD series tenmer were various, but showed averaged 4 to 6 in the agarose-electrophoresis. The dissimilarity coefficient (DC) between two isolates were compared by the cluster analyses, dendrogams and polar ordinations. The isolates of R. oryzae known. showed several groupings within the lower value of DC and were divided to two groups of amylo-process and other fungi with other purposes. The isolates unidentified were identified by the DC made of this results. Taxonomy of these isolates made by the morphological observations were consistent with those resulted above in most case but not in all aspects. More works were needed with the isolates known for detail informations of Mucorales.

  • PDF

Screening and Characteristics of Useful Fungi for Brewing from Commercial Nuruk in Chungcheong Provinces (충청지역 누룩에서 양조용 우수 곰팡이의 탐색 및 특성)

  • Baek, Seong-Yeol;Yun, Hye-Ju;Choi, Hye-Sun;Hong, Seung-Beom;Koo, Bon-Sung;Yeo, Soo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.373-378
    • /
    • 2010
  • Studies on standardization and quality upgrade of nuruk which is a basic component in brewing are required to increase the quality level of Korean traditional rice wines and to develop the technology for practical use of it. It is important to isolate best strains, to improve the properties and effectively preserve them for brewing industry. In this study, 16 commercial nuruk samples were obtained from the commercial markets located in Chungcheong areas in Korea. 174 fungal strains were isolated from the samples on DG18 medium using a dilution plating method and then screened for enzyme activity and acid production. The active strains were identified based on the morphological characteristics and ITS sequence analysis. Out of 174 strains, 12 strains showed high amylase activity. Especially, Rhizopus sp. CN084, CN174, Aspergillus sp. CN161 and Mycocladus sp. CN042 showed high saccharogenic power and dextrinogenic enzyme activity on cooked wheat bran medium. On the other hand, Aspergillus sp. CN010, CN161, Rhizopus sp. CN105, CN168 and Rhizomucor sp. CN088 produced high acid production on the same medium. Our results showed that the active strains may be used as microbial sources for nuruk starter with good quality in brewing.

Natural Occurrence of Aflatoxigenic Aspergillus Species and Aflatoxins in Traditional Korean Fermentation Starters, Meju and Nuruk

  • Woo, So Young;Lee, Sang Yoo;Tian, Fei;Jeong, A-Yeong;Yoo, Cha Nee;Kang, Seung Yoon;Chun, Hyang Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.438-446
    • /
    • 2020
  • Meju and nuruk (respectively soybean and malt) are traditional Korean fermentation starters that are vulnerable to contamination by harmful microorganisms such as aflatoxigenic fungi and their associated aflatoxins (AFs). In this study, Aspergillus spp. were isolated and identified from a total of 57 meju and 18 nuruk samples collected from Korean markets. Their potential aflatoxigenicity was investigated by examining the presence of three aflatoxin biosynthetic genes (aflO, aflP, and aflR) using multiplex polymerase chain reaction (mPCR) assays. Thereafter, aflatoxin production of isolates and the natural occurrence of AFs in meju and nuruk samples were analyzed by high-performance liquid chromatography (HPLC). A total of 177 Aspergillus isolates were identified and 130 isolates were obtained from meju samples. Of these, 25 isolates (19.2%) contained all three aflatoxin biosynthetic genes, and five (20%) of these isolates produced aflatoxins. Forty-seven of the Aspergillus isolates were obtained from nuruk samples, five of which (10.6%) expressed all three AF biosynthetic genes; however, none of these strains produced AFs. HPLC analysis showed that 88% (51/58) of the meju samples and 39% (7/18) of nuruk samples were not contaminated with AFs (below limit of detection). Among the isolates isolated from meju and nuruk, there were aflatoxigenic strains containing all three aflatoxin biosynthetic genes or producing aflatoxin in medium, but the frequency of aflatoxin contamination was low in the meju and nuruk samples.

Evaluating the Potential of Korean Mudflat-Derived Penicillium nalgiovense SJ02 as a Fungal Starter for Manufacturing Fermented Sausage

  • Sujeong Lee;Jeehwan Choe;Minji Kang;Minkyoung Kang;Sooah Kim;Sangnam Oh
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.912-933
    • /
    • 2024
  • The objective of this study was to isolate, identify, and evaluate novel Korean starter cultures for use in fermented sausages. A total of 72 strains were isolated from various indigenous sources, including Nuruk, Jeotgal, and mudflats on the west coast of South Korea. Two strains were identified as Penicillium nalgiovense (SD01 and SJ02), a traditional starter used in the production of fermented sausages. A comparative analysis was performed between SD01 and SJ02 using the commercial starter culture (M600). Strain SJ02 exhibited superior lipolytic and proteolytic activities, as well as an enhanced growth rate at the optimal salinity level of 2% NaCl compared to M600. No significant differences were observed in thiobarbituric acid reactive substances values, sausage colors, and texture properties between SJ02 and M600 fermented sausages, except for adhesiveness. Profiles of mycotoxin-related genes were similar for both strains. Electronic nose analysis revealed distinct aroma profiles between SJ02 and M600 fermented sausages, with a relatively higher levels of propan-2-one and butyl butanoate in SJ02, and a higher level of ethanol and propanal in M600. In electronic tongue analysis, there was no significant differences in taste characteristics between SJ02 and M600. These results indicate that P. nalgiovense SJ02 is a potential starter culture to produce dry fermented sausages, enhancing Korean style cured meat processing industry.

Analysis of Microbial Diversity in Makgeolli Fermentation Using PCR-DGGE (PCR-DGGE를 이용한 막걸리발효에서 미생물 다양성 분석)

  • Kwon, Seung-Jik;Ahn, Tae-Young;Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.232-238
    • /
    • 2012
  • Kumjungsansung-Makgeolli$^{(R)}$ is a traditional Korean rice wine that is fermented from traditional nuruk and rice. In this study, we performed the PCR-denaturing gradient gel electrophoresis (DGGE) analysis targeting the 16S and 28S rRNA genes to characterize bacterial and fungal diversity during Makgeolli fermentation. The predominant bacteria in the PCR-DGGE profile during Makgeolli fermentation were Lactobacillus spp. (Lactobacillus curvatus, L. kisonensis, L. plantarum, L. sakei, and L. gasseri), Pediococcus spp. (P. acidilactici, P. parvulus, P. agglomerans, and P. pentosaceus), Pantoea spp. (P. agglomerans and P. ananatis), and Citrobacter freundii; these were identified on the base of analysis of 16S rRNA gene sequences. The dominant bacterium during Makgeolli fermentation was L. curvatus. The predominant fungi in PCR-DGGE profile during Makgeolli fermentation were Pichia kudriavzevii, Saccharomyces cerevisiae, Asidia idahoensis, Kluyveromyces marxianus, Saccharomycopsis fibuligera, and Torulaspora delbrueckii, and these were identified on the basis of analysis of 28S rRNA gene sequences. The dominant fungal species during Makgeolli fermentation changed from P. kudriavzevii at 0-2 days incubation to S. cerevisiae at 3-6 days incubation. This study suggests that PCR-DGGE analysis could be a suitable tool for the understanding of microbial diversity and structure during Makgeolli fermentation.