• 제목/요약/키워드: Fungal genomics

검색결과 39건 처리시간 0.021초

Fungal Genomics in Dermatology

  • Lee, Young Bok;Lee, Soo Young;Seo, Ji Min;Kang, Min Ji;Yu, Dong Soo
    • Journal of Mycology and Infection
    • /
    • 제24권2호
    • /
    • pp.37-44
    • /
    • 2019
  • To date, hundreds of fungal genomes have been sequenced, and many more are underway. Recently developed cutting-edge techniques generate very large amounts of data, and the field of fungal genomics in dermatology has consequently evolved substantially. Methodological improvements have broadened the scope of large-scale ecological studies in dermatology, including biodiversity assessments and genomic identification of fungi. Here, we aimed to provide a brief introduction to bioinformatic approaches to fungal genomics in the field of dermatology. We described the history and basic concepts of fungal genomics and presented sequencing-based techniques for fungal identification, including a list of the revised taxa of dermatophytes, as determined by current phylogenetic analysis. Finally, we discussed the emerging trends in fungal genomics in dermatology, such as next-generation sequencing.

Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae

  • Park, Jaejin;Kong, Sunghyung;Kim, Seryun;Kang, Seogchan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제30권2호
    • /
    • pp.136-150
    • /
    • 2014
  • Although multiple transcription factors (TFs) have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX) TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1) correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2) are Pezizomycotina-specific members. Deletion of MoFKH1 (${\Delta}Mofkh1$) resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ${\Delta}Mohcm1$ exhibited reduced mycelial growth and conidial germination. Conidia of ${\Delta}Mofkh1$ and ${\Delta}Mohcm1$ were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (${\Delta}Mofox1$) did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and MoHCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.

Draft Genome Sequence of Alternaria alternata JS-1623, a Fungal Endophyte of Abies koreana

  • Park, Sook-Young;Jeon, Jongbum;Kim, Jung A.;Jeon, Mi Jin;Jeong, Min-Hye;Kim, Youngmin;Lee, Yerim;Chung, Hyunjung;Lee, Yong-Hwan;Kim, Soonok
    • Mycobiology
    • /
    • 제48권3호
    • /
    • pp.240-244
    • /
    • 2020
  • Alternaria alternata JS-1623 is an endophytic fungus isolated from a stem tissue of Korean fir, Abies koreana. Ethyl acetate extracts of culture filtrates exhibited anti-inflammatory activity in LPS induced microglia BV-2 cell without cytotoxicity. Here we report a 33.67 Mb sized genome assembly of JS-1623 comprised of 13 scaffolds with N50 of 4.96 Mb, and 92.41% of BUSCO completeness. GC contents were 50.97%. Of the 11,197 genes annotated, gene families related to the biosynthesis of secondary metabolites or transcription factors were identified.

Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases

  • Wu, Jiayao;Choi, Jaeyoung;Asiegbu, Fred O.;Lee, Yong-Hwan
    • Mycobiology
    • /
    • 제48권5호
    • /
    • pp.373-382
    • /
    • 2020
  • Laccases (EC 1.10.3.2), a group of multi-copper oxidases (MCOs), play multiple biological functions and widely exist in many species. Fungal laccases have been extensively studied for their industrial applications, however, there was no database specially focused on fungal laccases. To provide a comparative genomics platform for fungal laccases, we have developed a comparative genomics platform for laccases and MCOs (http://laccase.riceblast.snu.ac. kr/). Based on protein domain profiles of characterized sequences, 3,571 laccases were predicted from 690 genomes including 253 fungi. The number of putative laccases and their properties exhibited dynamic distribution across the taxonomy. A total of 505 laccases from 68 genomes were selected and subjected to phylogenetic analysis. As a result, four clades comprised of nine subclades were phylogenetically grouped by their putative functions and analyzed at the sequence level. Our work would provide a workbench for putative laccases mainly focused on the fungal kingdom as well as a new perspective in the identification and classification of putative laccases and MCOs.

Synthesis and Biological Activity of Fungal Metabolite, 4-Hydroxy-3-(3'-Methyl-2'-Butenyl)-Benzoic Acid

  • Kim, Hye-Jin;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.543-545
    • /
    • 2007
  • 4-Hydroxy-3-(3'-methyl-2'-butenyl)-benzoic acid (HMBA) was previously isolated from Curvularia sp. KF119 as a cell-cycle inhibitor. However, the present study used a novel and practical synthetic method to prepare a large quantity of HMBA. The synthetic HMBA was found to inhibit the cell-cycle progression of HeLa cells with a comparable potency to the natural fungal metabolite. The inhibition of the cell-cycle progression by the synthetic HMBA involved both the activation of $p21^{WAF1}$ and the inhibition of cyclin D1 expression in the cells. Consequently, this new synthetic procedure provides an easy and convenient way to produce or manipulate the original fungal metabolite.

Comparative Analysis of the Korean Population of Magnaporthe oryzae by Multilocus Microsatellite Typing

  • Choi, Jaehyuk;Kim, Hyojung;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제29권4호
    • /
    • pp.435-439
    • /
    • 2013
  • Rice blast fungus, Magnaporthe oryzae, inflicts serious damage to global rice production. Due to high variability of this fungal pathogen, resistance of newly-released rice cultivars is easily broken down. To understand the population structure of M. oryzae, we analyzed the genetic diversity of the Korean population using multilocus microsatellite typing. Eleven microsatellite markers were applied to the population of 190 rice isolates which had been collected in Korea for two decades since the 1980's. Average values of gene diversity and allele frequency were 0.412 and 6.5, respectively. Comparative analysis of the digitized allele information revealed that the Korean population exhibited a similar level of allele diversity to the integrated diversity of the world populations, suggesting a particularly high diversity of the Korean population. Therefore, these microsatellite markers and the comprehensive collection of field isolates will be useful genetic resources to identify the genetic diversity of M. oryzae population.

Draft Genome Sequence of Xylaria grammica EL000614, a Strain Producing Grammicin, a Potent Nematicidal Compound

  • Park, Sook-Young;Jeon, Jongbum;Kim, Jung A;Jeon, Mi Jin;Yu, Nan Hee;Kim, Seulbi;Park, Ae Ran;Kim, Jin-Cheol;Lee, Yerim;Kim, Youngmin;Choi, Eu Ddeum;Jeong, Min-Hye;Lee, Yong-Hwan;Kim, Soonok
    • Mycobiology
    • /
    • 제49권3호
    • /
    • pp.294-296
    • /
    • 2021
  • An endolichenic fungus, Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin. We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.

Analysis of Rice Blast Infection and Resistance-inducing Mechanisms via Effectors Secreted from Magnaporthe oryzae

  • Saitoh, Hiromasa;H, Kanzaki;K, Fujisaki;R, Terauchi
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.61-61
    • /
    • 2015
  • Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The rice - M. oryzae pathosystem has become a model in the study of plant - fungal interactions due to its economic importance and accumulating knowledge. During the evolutionary arms race with M. oryzae, rice plants evolved a repertoire of Resistance (R) genes to protect themselves from diseases in a gene-for-gene fashion. M. oryzae secretes a battery of small effector proteins to manipulate host functions for its successful infection, and some of them are recognized by host R proteins as avirulence effectors (AVR), which turns on strong immunity. Therefore, the analysis of interactions between AVRs and their cognate R proteins provide crucial insights into the molecular basis of plant - fungal interactions. Rice blast resistance genes Pik, Pia, Pii comprise pairs of protein-coding ORFs, Pik-1 and Pik-2, RGA4 and RGA5, Pii-1 and Pii-2, respectively. In all three cases, the paired genes are tightly linked and oriented to the opposite directions. In the AVR-Pik/Pik interaction, it has been unraveled that AVR-Pik binds to the N-terminal coiled-coil domain of Pik-1. RGA4 and RGA5 are necessary and sufficient to mediate Pia resistance and recognize the M. oryzae effectors AVR-Pia and AVR1-CO39. A domain at the C-terminus of RGA5 characterized by a heavy metal associated domain was identified as the AVR-binding domain of RGA5. Similarly, physical interactions among Pii-1, Pii-2 and AVR-Pii are being analyzed.

  • PDF