• Title/Summary/Keyword: Functionally graded materials

Search Result 449, Processing Time 0.024 seconds

Vibration analysis of different material distributions of functionally graded microbeam

  • Tlidji, Youcef;Zidour, Mohamed;Draiche, Kadda;Safa, Abdelkader;Bourada, Mohamed;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.637-649
    • /
    • 2019
  • In the current research paper, a quasi-3D beam theory is developed for free vibration analysis of functionally graded microbeams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by three functions, power function, symmetric power function and sigmoid law distribution. The modified coupled stress theory is used to incorporate size dependency of micobeam. The equation of motion is derived by using Hamilton's principle, however, Navier type solution method is used to obtain frequencies. Numerical results show the effects of the function distribution, power index and material scale parameter on fundamental frequencies of microbeams. This model provides designers with guidance to select the proper distributions and functions.

Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam

  • Ehyaei, Javad;Akbarshahi, Amir;Shafiei, Navvab
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.141-169
    • /
    • 2017
  • In this paper, a nanobeam connected to a rotating molecular hub is considered. The vibration behavior of rotating functionally graded nanobeam based on Eringen's nonlocal theory and Euler-Bernoulli beam model is investigated. Furthermore, axial preload and porosity effect is studied. It is supposed that the material attributes of the functionally graded porous nanobeam, varies continuously in the thickness direction according to the power law model considering the even distribution of porosities. Porosity at the nanoscopic length scale can affect on the rotating functionally graded nanobeams dynamics. The equations of motion and the associated boundary conditions are derived through the Hamilton's principle and generalized differential quadrature method (GDQM) is utilized to solve the equations. In this paper, the influences of some parameters such as functionally graded power (FG-index), porosity parameter, axial preload, nonlocal parameter and angular velocity on natural frequencies of rotating nanobeams with pure ceramic, pure metal and functionally graded materials are examined and some comparisons about the influence of various parameters on the natural frequencies corresponding to the simply-simply, simplyclamped, clamped-clamped boundary conditions are carried out.

Thermal bending analysis of functionally graded thick sandwich plates including stretching effect

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Smain Bezzina;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.373-384
    • /
    • 2023
  • The main objective of this research work is to present analytical solutions for the thermoelastic bending analysis of sandwich plates made of functionally graded materials with an arbitrary gradient. The governing equations of equilibrium are solved for a functionally graded sandwich plates under the effect of thermal loads. The transverse shear and normal strain and stress effects on thermoelastic bending of such sandwich plates are considered. Field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory are derived. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. The results of the shear deformation theories are compared together. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

Boundary conditions effect for buckling analysis of porous functionally graded nanobeam

  • Bouhadra, Abdelhakim;Menasria, Abderrahmane;Rachedi, Mohamed Ali
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.313-325
    • /
    • 2021
  • This paper is concerned with the buckling behavior of 2D and quasi-3D problem of functionally graded nanobeam founded on high order shear deformation beams theory and made by two different types of porous distribution materials in Nano- and micro-scales. The used Quasi-3D formulation takes into account the transverse shear effect and uses only three variables. Both formulations do not include the correction factor that is required in the first shear deformation theory proposed by Timoshenko. Governing equations are derived using the principle of virtual work. Analytical resolutions for buckling of FG nanobeam are introduced under tow different boundary conditions, and the results obtained are compared to those proposed in literatures.

Theoretical analysis of composite beams under uniformly distributed load

  • Daouadji, Tahar Hassaine;Adim, Belkacem
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The bending problem of a functionally graded cantilever beam subjected to uniformly distributed load is investigated. The material properties of the functionally graded beam are assumed to vary continuously through the thickness, according to a power-law distribution of the volume fraction of the constituents. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. A practical example is presented to show the application of the method.

Free vibration of tapered arches made of axially functionally graded materials

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.569-594
    • /
    • 2013
  • The free vibration of axially functionally graded tapered arches including shear deformation and rotatory inertia are studied through solving the governing differential equation of motion. Numerical results are presented for circular, parabolic, catenary, elliptic and sinusoidal arches with hinged-hinged, hinged-clamped and clamped-clamped end restraints. In this study Differential Quadrature element of lowest order (DQEL) or Lagrangian Interpolation technique is applied to solve the problems. Three general taper types for rectangular section are considered. The lowest four natural frequencies are calculated and compared with the published results.

Functionally Graded Polymer Composites : Simulation of Fiber Distribution

  • Choe, Chul-Rim;C. Klingshirn;K. Friedrich
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.236-239
    • /
    • 2002
  • Centrifugation is a method to create functionally graded materials (FGM) with a thermosetting matrix. In this study the movement of short carbon fibers in an epoxy resin during the centrifugation process was modeled to determine the fiber distribution in the final product. For this purpose a form factor K was introduced to modify a set of equations that was previously shown to be valid for the motion of spheres. It was shown that the results of the simulation were in good agreement with the experimental data, when an empirical K factor of four was chosen.

Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates

  • Kaci, Abdelhakim;Tounsi, Abdelouahed;Bakhti, Karima;Adda Bedia, El Abbas
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.491-504
    • /
    • 2012
  • In this paper, the nonlinear cylindrical bending of simply supported, functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs), is studied. The plates are subjected to uniform pressure loading in thermal environments and their geometric nonlinearity is introduced in the strain-displacement equations based on Von-Karman assumptions. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are reduced to linear differential equation with nonlinear boundary conditions yielding a simple solution procedure. Numerical results are presented to show the effect of the material distribution on the deflections and stresses.

Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams

  • Rahmani, O.;Refaeinejad, V.;Hosseini, S.A.H.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • In this paper, various nonlocal higher-order shear deformation beam theories that consider the size dependent effects in Functionally Graded Material (FGM) beam are examined. The presented theories fulfill the zero traction boundary conditions on the top and bottom surface of the beam and a shear correction factor is not required. Hamilton's principle is used to derive equation of motion as well as related boundary condition. The Navier solution is applied to solve the simply supported boundary conditions and exact formulas are proposed for the bending and static buckling. A parametric study is also included to investigate the effect of gradient index, length scale parameter and length-to-thickness ratio (aspect ratio) on the bending and the static buckling characteristics of FG nanobeams.