• Title/Summary/Keyword: Functionally graded material

Search Result 864, Processing Time 0.022 seconds

Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory

  • Tebboune, Wafa;Benrahou, Kouider Halim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.443-465
    • /
    • 2015
  • In this paper, an efficient and simple trigonometric shear deformation theory is presented for thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and stability equations of plates made of functionally graded materials are derived. The boundary conditions for the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and thickness ratio on the critical buckling temperature of functionally graded plates are investigated and discussed.

Elastic-plastic fracture of functionally graded circular shafts in torsion

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.299-318
    • /
    • 2016
  • Analytical investigations were performed of a longitudinal crack representing a cylindrical surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-linear constitutive relations between the shear stresses and shear strains. The fracture was studied in terms of the strain energy release rate. Within the framework of small strain approach, the strain energy release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the crack front. The analytical approach developed was applied to study the fracture in a clamped circular shaft. In order to verify the solution derived, the strain energy release rate was determined also by considering the shaft complimentary strain energy. The effects were evaluated of material properties, crack location and material non-linearity on the fracture behavior. The results obtained can be applied for optimization of the shafts structure with respect to the fracture performance. It was shown that the approach developed in the present paper is very useful for studying the longitudinal fracture in circular shafts in torsion with considering the material non-linearity.

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri;Abbas Loghman;Mohammad Arefi
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.115-126
    • /
    • 2023
  • This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

Numerical Analysis for the Characteristic Investigation of Homogenization Techniques Used for Equivalent Material Properties of Functionally Graded Material (기능경사 소재 등가 물성치 예측을 위한 균질화 기법의 특성분석을 위한 수치해석)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Shin, Dae-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Graded layers in which two different constituent particles are mixed are inserted into functionally graded material such that the volume fractions of constituent particles vary continuously and functionally over the entire material domain. The material properties of this dual-phase graded region, which is essential for the numerical analysis of the thermo-mechanical behavior of FGM, have been predicted by traditional homogenization methods. But, these methods are limited to predict the global equivalent material properties of FGMs because the detailed geometry information such as the particel shape and the dispersion structure is not considered. In this context, this study intends to investigate the characteristics of these homogenization methods through the finite element analysis utilizing the discrete micromechanics models of the graded layer, for various volume fractions and external loading conditions.

Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory

  • Tu, Tran Minh;Quoc, Tran Huu;Long, Nguyen Van
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.311-324
    • /
    • 2017
  • In this paper a new eight-unknown higher order shear deformation theory is proposed for functionally graded (FG) material plates. The theory based on full twelve-unknown higher order shear deformation theory, simultaneously satisfy zeros transverse stresses at top and bottom surface of FG plates. Equations of motion are derived from principle of virtual displacement. Exact closed-form solutions are obtained for simply supported rectangular FG plates under uniform loading. The accuracy of present numerical results has been verified by comparing it with generalized shear deformation theory. The effect of power law index of functionally graded material, side-to-thickness ratio, and aspect ratio on static behavior of FG plates is investigated.

Vibration of sumberged functionally graded cylindrical shell based on first order shear deformation theory using wave propagation method

  • Farahani, Hossein;Barati, Farzan
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.575-587
    • /
    • 2015
  • This paper focuses on vibration analysis of functionally graded cylindrical shell submerged in an incompressible fluid. The equation is established considering axial and lateral hydrostatic pressure based on first order shear deformation theory of shell motion using the wave propagation approach and classic Fl$\ddot{u}$gge shell equations. To study accuracy of the present analysis, a comparison carried out with a known data and the finite element package ABAQUS. With this method the effects of shell parameters, m, n, h/R, L/R, different boundary conditions and different power-law exponent of material of functionally graded cylindrical shells, on the frequencies are investigated. The results obtained from the present approach show good agreement with published results.

Nonlinear cylindrical bending analysis of E-FGM plates with variable thickness

  • Kaci, Abdelhakim;Belakhdar, Khalil;Tounsi, Abdelouahed;Bedia, El Abbes Adda
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.339-356
    • /
    • 2014
  • This paper presents a study of the nonlinear cylindrical bending of an exponential functionally graded plate (simply called E-FG) with variable thickness. The plate is subjected to uniform pressure loading and his geometric nonlinearity is introduced in the strain-displacement equations based on Von-Karman assumptions. The material properties of functionally graded plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution; and the solution is obtained using Hamilton's principle for constant plate thickness. In order to analyze functionally graded plate with variable thickness, a numerical solution using finite difference method is used, where parabolic variation of the plate thickness is studied. The results for E-FG plates are given in dimensionless graphical forms; and the effects of material and geometric properties on displacements and normal stresses through the thickness are determined.

Symplectic analysis of functionally graded beams subjected to arbitrary lateral loads

  • Zhao, Li;Gan, Wei Z.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.27-40
    • /
    • 2015
  • The rational analytical solutions are presented for functionally graded beams subjected to arbitrary tractions on the upper and lower surfaces. The Young's modulus is assumed to vary exponentially along the thickness direction while the Poisson's ratio keeps unaltered. Within the framework of symplectic elasticity, zero eigensolutions along with general eigensolutions are investigated to derive the homogeneous solutions of functionally graded beams with no body force and traction-free lateral surfaces. Zero eigensolutions are proved to compose the basic solutions of the Saint-Venant problem, while general eigensolutions which vary exponentially with the axial coordinate have a significant influence on the local behavior. The complete elasticity solutions presented here include homogeneous solutions and particular solutions which satisfy the loading conditions on the lateral surfaces. Numerical examples are considered and compared with established results, illustrating the effects of material inhomogeneity on the localized stress distributions.

Hygro-thermal post-buckling analysis of a functionally graded beam

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.459-471
    • /
    • 2019
  • This paper presents post-buckling analysis of a functionally graded beam under hygro-thermal effect. The material properties of the beam change though height axis with a power-law function. In the nonlinear kinematics of the post-buckling problem, the total Lagrangian approach is used. In the solution of the problem, the finite element method is used within plane solid continua. In the nonlinear solution, the Newton-Raphson method is used with incremental displacements. Comparison studies are performed. In the numerical results, the effects of the material distribution, the geometry parameters, the temperature and the moisture changes on the post-buckling responses of the functionally graded beam are presented and discussed.

Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.705-714
    • /
    • 2022
  • The aim of this paper is to investigate nonlinear dynamic responses of functionally graded composite beam resting on the nonlinear viscoelastic foundation subjected to moving mass with temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory and the governing nonlinear dynamic equation is obtained by using the Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then the governing equation is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters, magnitude and velocity of the moving mass on the nonlinear dynamic responses are investigated. Also, the buckling temperatures of the functionally graded beams based on the finite strain theory are obtained.