• 제목/요약/키워드: Functionally Gradient Material

검색결과 180건 처리시간 0.025초

On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Advances in nano research
    • /
    • 제9권1호
    • /
    • pp.33-45
    • /
    • 2020
  • Geometrically nonlinear buckling of functionally graded magneto-electro-elastic (FG-MEE) nanoshells with the use of classical shell theory and nonlocal strain gradient theory (NSGT) has been analyzed in present research. Mathematical formulation based on NSGT gives two scale coefficients for simultaneous description of structural stiffness reduction and increment. Functional gradation of material properties is described based on power-law formulation. The nanoshell is under a multi-physical field related to applied voltage, magnetic potential, and mechanical load. Exerting a strong electric voltage, magnetic potential or mechanical load may lead to buckling of nanoshell. Taking into account geometric nonlinearity effects after buckling, the behavior of nanoshell in post-buckling regime can be analyzed. Nonlinear governing equations are reduced to ordinary equations utilizing Galerkin's approach and post-buckling curves are obtained based on an analytical procedure. It will be shown that post-buckling curves are dependent on nonlocal/strain gradient parameters, electric voltage magnitude and sign, magnetic potential magnitude and sign and material gradation exponent.

경사기능재료에서의 열탄성 불안정성 (Thermoelastic Instability in Functionally Graded Materials)

  • 장용훈;안성호;이승욱
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.130-137
    • /
    • 2006
  • A transient finite element simulation is developed for the two-dimensional thermoelastic contact problem of a stationary functionally graded material between sliding layers, with frictional heat generation. Thermoelastic instability in functionally graded materials is investigated. The critical speed of functionally graded material coating disk is larger than that of the conventional steel disk. The effect of the nonhomogeneity parameter in functionally graded material is also investigated. The results show that functionally gradient materials restrain the growth of perturbation and delay the contact separation.

Y방향을 따라 물성치구배를 갖는 직교이방성 함수구배 재료에서 전파하는 모드 III 균열의 응력장과 변위장 (Stress and Displacement Fields of a Propagating Mode III Crack in Orthotropic Functionally Gradient Materials with Property Gradation Along Y Direction)

  • 이광호
    • 한국산업융합학회 논문집
    • /
    • 제9권1호
    • /
    • pp.37-44
    • /
    • 2006
  • Stress and displacement fields of a Mode III crack propagating along the normal to gradient in an orthotropic functionally gradient materials (OFGM), which has (1) an exponential variation of shear modulus and density, and (2) linear variation of shear modulus with a constant density, are derived. The equations of motion in OFGM are developed and solution to the displacement and stress fields for a propagating crack at constant speed though an asymptotic analysis. The first three terms in expansion of stress and displacement are derived to explicitly bring out the influence of nonhomogeneity. When the FGM constant ${\zeta}$ is zero or $r{\rightarrow}0$, the fields for OFGM are almost same as the those for homogeneous orthotropic material. Using the stress components, the effects of nonhomogeneity on stress components are discussed.

  • PDF

소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(II) (A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method(II))

  • 정연길;최성철
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.120-130
    • /
    • 1995
  • To analyze the mechanical property and the residual stress in functionally gradient materials(FGMs), disctype TZP/Ni-and TZP/SUS304-FGM were hot pressed using powder metallurgy compared with directly bonded materials which were fabricated by the same method. The continuous interface and the microstructure of FGMs were characterized by EPMA, WDS, optical microscope and SEM. By fractography, the fracture behavior of FGMs was mainly influenced by the defects which originated from the fabrication process. And the defectlike cracks in the FGMs induced by the residual stress have been shown to cause failure. This fact has well corresponded to the analysis of the residual stress distribution by Finite Element Method (FEM). The residual stress generated on the interface (between each layer, and matrix and second phase, respectively) were dominantly influenced on the sintering temperature and the material constants. As a consequence, the interfacial stability and the relaxation of residual stress could be obtained through compositional gradient.

  • PDF

Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects

  • Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.169-186
    • /
    • 2020
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), mechanical-hygro-thermal vibrational analyzes of shear deformable porous functionally graded (FG) nanoplate on visco-elastic medium has been performed. The presented formulation incorporates two scale factors for examining vibrational behaviors of nano-dimension plates more accurately. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. It is supposed that the nano-size plate is exposed to hygro-thermal and variable compressive mechanical loadings. The governing equations achieved by Hamilton's principle are solved implementing DQM. Presented results indicate the prominence of moisture/temperature variation, damping factor, material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational frequencies of FG nano-size plate.

Nonlinear resonance of porous functionally graded nanoshells with geometrical imperfection

  • Wu-Bin Shan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.355-368
    • /
    • 2023
  • Employing the non-local strain gradient theory (NSGT), this paper investigates the nonlinear resonance characteristics of functionally graded material (FGM) nanoshells with initial geometric imperfection for the first time. The effective material properties of the porous FGM nanoshells with even distribution of porosities are estimated by a modified power-law model. With the guidance of Love's thin shell theory and considering initial geometric imperfection, the strain equations of the shells are obtained. In order to characterize the small-scale effect of the nanoshells, the nonlocal parameter and strain gradient parameter are introduced. Subsequently, the Euler-Lagrange principle was used to derive the motion equations. Considering three boundary conditions, the Galerkin principle combined with the modified Lindstedt Poincare (MLP) method are employed to discretize and solve the motion equations. Finally, the effects of initial geometric imperfection, functional gradient index, strain gradient parameters, non-local parameters and porosity volume fraction on the nonlinear resonance of the porous FGM nanoshells are examined.

Dynamic Characteristics of an Eccentric Crack in a Functionally Graded Piezoelectric Ceramic Strip

  • Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1582-1589
    • /
    • 2004
  • The dynamic response of an eccentric Griffith crack in functionally graded piezoelectric ceramic strip under anti-plane shear impact loading is ana lysed using integral transform method. Laplace transform and Fourier transform are used to reduce the problem to two pairs of dual integral equations, which are then expressed to Fredholm integral equations of the second kind. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. The impermeable crack boundary condition is adopted. Numerical values on the dynamic stress intensity factors are presented for the functionally graded piezoelectric material to show the dependence of the gradient of material properties and electric loadings.

Fracture analysis of functionally graded beams with considering material non-linearity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.487-494
    • /
    • 2017
  • The present paper deals with a theoretical study of delamination fracture in the Crack Lap Shear (CLS) functionally graded beam configuration. The basic purpose is to analyze the fracture with taking into account the material non-linearity. The mechanical behavior of CLS was described by using a non-linear stress-strain relation. It was assumed that the material is functionally graded along the beam height. The fracture was analyzed by applying the J-integral approach. The curvature and neutral axis coordinate of CLS beam were derived in order to solve analytically the J-integral. The non-linear solution of J-integral obtained was verified by analyzing the strain energy release rate with considering material non-linearity. The effects of material gradient, crack location along the beam height and material non-linearity on fracture behavior were evaluated. The J-integral non-linear solution derived is very suitable for parametric studies of longitudinal fracture in the CLS beam. The results obtained can be used to optimize the functionally graded beam structure with respect to the fracture performance. The analytical approach developed in the present paper contributes for the understanding of delamination fracture in functionally graded beams exhibiting material non-linearity.

고온에서 외부 가진력을 받는 회전하는 경사기능 박판 블레이드의 동적응답 해석 (Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady Temperature and External Excitation)

  • 오병영;나성수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.643-648
    • /
    • 2004
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics are provided for the case of a biconvex cross section and pertinent conclusions are outlined.

  • PDF

고온에서 외부 가진력을 받는 회전하는 경사기능 박간 블레이드의 동적응답 해석 (Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady High Temperature and External Excitation)

  • 나성수;오병영
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.976-982
    • /
    • 2005
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades are modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics and pertinent conclusions are outlined.