• 제목/요약/키워드: Functional monomer

검색결과 154건 처리시간 0.023초

ENVELOPE METHOD를 이용한 플라즈마 중합 유기박막의 광학특성 (Optical Properties for Plasma Polymerization Thin Films Using Envelope Method By Spectrophotometry)

  • 유득찬;박구범;이덕출;황보창권;진권휘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.183-186
    • /
    • 1991
  • In order to prepare the functional organic optic meterials, the capacitive coupled gas flow type plasma polymerization apparatus was designed and manufactured. Styrene and para-Xylene monomer were adopt as organic materisl. Optical constant, refrative index, extinction coefficient of organic thin films by the gas flow type plasma polymerization appratus were determined by envelope method using spectrophotometry. The refractive index of plasma polymerized thin films was decreased in accordance to increase of wave length and discharge time. The extinction coefficient was very small compared with refractive index. From the experimental result of optical constant and film thickness, it was considered that the films which had required optical properties and thickness can be prepared by control of polymerization condition.

  • PDF

분자화약 구조를 포함하는 옥시란계 에너지화 단량체의 설계 및 합성 (Design and Synthesis of Novel Energetic Oxirane Monomers Containing a Molecular Explosive Moiety)

  • 심엽신;권영환;김진석
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.131-138
    • /
    • 2015
  • Energetic monomers with new design concept were synthesized for energetic prepolymers. Novel energetic monomers consisted of ring-opening polymerizable oxirane and a molecular explosive moiety instead of small explosophores as energetic functional groups. According to the design concept, glycidyl dinitroazetidine (GDNAZ) and glycidyl nitroazetidinol(GNAZO) energetic monomers were synthesized, respectively, and characterized by NMR, EA and GC MS. Heat of formation and detonation performance were calculated by theoretical method to evaluate energy performance of these novel energetic monomers. The result revealed that GDANZ and GNAZO possessed high potential as new energetic monomers for synthesizing energetic prepolymers and binders in PBXs.

반응성 염료의 광그라프트에 의한 양모직물의 염색 (Photo-grafting Dyeing of Wool Fabrics with Dimethacrylated Quinizarin Dye)

  • 동위엔위엔;장진호
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2012년도 제46차 학술발표회
    • /
    • pp.26-26
    • /
    • 2012
  • The hydrophobic nature of the wool surface give rise to difficult penetration of dye molecules. Among all the methods of modification, graft polymerization is an attractive method to impart a variety of functional groups to a polymer. Grafting has been made by irradiating the light on the polymer in the presence of a solvent containing monomer. The energy source commonly used are high-energy electrons, X-rays, UV and visible light. UV irradiation is a relatively low-energy radiation in comparison with others since it has the least possibility to change bulk properties. In the present paper, a photo-reactive dye was synthesized from quinizarin by the reaction with methacryloyl chloride. The synthesized dye was continuously grafted onto wool fabric at room temperature by UV irradiation. Several key parameters including UV energy, dye concentration and pH have been examined to understand their influence on the photoreactive coloration.

  • PDF

Polymeric Materials for Molecular Recognition

  • Ki, Chang-Do;Lee, Kang-Won;Chang, Ji-Young
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.172-172
    • /
    • 2006
  • Molecular imprinting constitutes a valuable method of preparing polymeric materials with specific binding properties. The most conspicuous merit of molecular imprinting is that structurally three-dimensional recognition sites can be introduced into a polymer matrix with ease and low cost when compared with the complicated process of biological system for antigen and antibody. We used a thermally reversible bond for the preparation of the monomer-template complex, which allowed us to remove the template easily by means of a simple thermal reaction and to simultaneously introduce various functional groups into the cavity. This method is especially propitious for developing artificial receptors for molecules lacking strongly interactive groups.

  • PDF

Detection of ${\alpha}-Cyclodextrin$ and E.coli Cell Using Polydiacetylene Supramolecules

  • Lee, Gil-Sun;Choi, Hyun;Lee, Chung-Wan;Ahn, Dong-June;Oh, Min-Kyu;Kim, Jong-Man
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.306-306
    • /
    • 2006
  • We immobilized and patterned PDA vesicles on solid substrate using micro arrayer, which have moieties to react with chemical and biological materials. Immobilized vesicle system was developed since it possesses many advantages in multiple screening, durable stability, and higher sensitivity. We applied polydiacetylene supramolecules to chemical and biological sensors for detection of ${\alpha}-cyclodextrin$ and E.coli cell selectively. This detection method could be applied as DNA chip, protein chip, and cell chip for multiple screening as well as chemical sensor by modifying the functional groups of diacetylene monomer.

  • PDF

Applications of Conductive Polymers to Electrochemical Sensors and Energy Conversion Electrodes

  • Kim, Dong-Min;Noh, Hui-Bog;Shim, Yoon-Bo
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권4호
    • /
    • pp.125-139
    • /
    • 2013
  • The electrical conductive polymers (ECPs) reported at my research group are introduced in this review, which works are started from the late Professor Su-Moon Park's pioneering research for polyaniline at the University of New Mexico. The electrochemical and spectroelectrochemical properties and their applications to sensor and energy conversion systems are briefly described. At first, the growth and degradation mechanism of polyaniline describes and we extend to polypyrrole, polyazulene, polydiaminonaphthalenes, and polyterthiophene derivatives. In addition, the preparation of monomer precursors having functional groups is briefly described that can give us many exceptional applications for several chemical reactions. We describe the application of these ECPs for the fabrication of chemical sensors, biosensors, biofuel cells, and solar cells.

New red light-emitting copolymer based on polyfluorene

  • Cho, Nam-Sung;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.721-723
    • /
    • 2002
  • We report a new red light emitting fluorene-based copolymer, poly{9,9-bis(2'-ethylhexyl)fluorene-2,7-diyl-co-2, 5-bis(2-thienyl-1-cyanovinyl}-1-(2'-ethylhexyloxy)-4methoxybenzene-5",5'''-diyl} (PFTCVB). The synthesized copolymers showed the absorption maxima at about 380 nm and the absorption between 425 and 600 nm increased as the fraction of the thiophene-containing monomer (BTCVB) increased. In PL, the emission maxima of the copolymers were red-shifted as the fraction of BTCVB increased, despite the similar absorption characteristics were shown in the UV-visible spectra. The copolymer containing 15 mol% of BTCVB showed a maximum PL and EL emission at 620 and 630 nm.

  • PDF

Immobilization of Arg-Gly-Asp (RGD) Sequence in Sugar-Containing Copolymer for Culturing Fibroblast Cells

  • Na, Kun;Park, Keun-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.193-196
    • /
    • 2004
  • The peptide Arg-Gly-Asp (RGD) was immobilized through their amino terminus to ends of a sugar bearing copolymer, producing a functional hybrid copolymer. Poly(N-p-vinylbenzyl-D-maltonamide-co-6-(p-vinylbenzamido)-hexanoic acid-g-GRGDS) [p(VMA-co-VBGRGDS)] promoted the attachment and growth of NIH fibroblast cells. The interaction between fibroblast cells and p(VMA-co- VBGRGDS) copolymer resulted in effective cell attachment, proliferation, and morphological changes by introduction of a GRGDS sequence. Moreover, when pretreated with soluble RGD monomer, attachment of fibroblast cells was suppressed approximately 50% from that of the p(VMA-co-VBGRGDS) surface.

Effect of nitrogen doping on properties of plasma polymerized poly (ethylene glycol) film

  • Javid, Amjed;Long, Wen;Lee, Joon S.;Kim, Jay B.;Sahu, B.B.;Jin, Su B.;Han, Jeon G.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.286-288
    • /
    • 2014
  • This study deals with the catalyst free radio frequency plasma assisted polymerization of ethylene glycol using nitrogen as reactive gas to modify the surface chemistry and morphology. The deposited film was characterized through various analysis techniques i.e. surface profilometry, Forier transform infrared spectroscopy, water contact angle and UV-visible spectroscopy to analyze film thickness, chemical structure, surface energy and optical properties respectively. The surface topography was analyzed by Atomic force microscopy. It was observed that the ethylene oxide behaviour and optical transmittance of the film were reduced with the introduction of nitrogen gas due to higher fragmentation of monomer. However the hydrophilic behavior of the film improved due to formation of new water loving functional groups suitable for biomedical applications.

  • PDF

분자 각인 막의 선택적 분리 (Selective Separations Using Molecularly Imprinted Membranes)

  • 이정우;박중곤
    • KSBB Journal
    • /
    • 제20권3호
    • /
    • pp.133-141
    • /
    • 2005
  • This review presents the preparation, transport mechanism and application of molecularly imprinted membranes (MIM). Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIM have some advantages; a high capacity due to a large surface area, faster transport of substrate molecules and faster equilibrium of binding cavities compared to molecularly imprinted particles. MIM were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. MIM can be prepared by in-situ polymerization, wet phase inversion, dry phase inversion, and surface imprinting method. MIM can continuously separate mixtures based on facilitated or retarded diffusion of the template. MIM can change their permeability in the presence of templates. MIM have a potential to be used to separate chiral compounds and materials with similar structures. However the application of MIM by the chemical industries is still in its infancy stages.