• Title/Summary/Keyword: Functional load

Search Result 291, Processing Time 0.023 seconds

A STUDY OF THE STRESS DISTRIBUTION ON THE SECOND ABUTMENT AND SUPPORTING TISSUES IN FIXED PARTIAL DENTURE USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS METHOD (고정성 가공의치에서 이차 지대치에 발생하는 응력의 삼차원 유한요소법적 분석)

  • Kim, Jeong-Hee;Jo, Kwang-Hun;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.675-694
    • /
    • 2000
  • The purpose of this study was to investigate the displacement of and the stress distribution on the prosthesis, abutment, and its supporting tissues under functional load, and the effect of alteration in root length of 2nd abutment. The 3-dimensional finite element method was used and the finite element models were prepared in which the abutments of left mandibular 5 unit axed partial denture were canine, the 1st pre-molar and the 2nd molar, and the root lengths of canines were as follows. Model I : Root length of canine was 2mm longer than the 1st premolar Model II : Root length of canine was 2mm shorter than the 1st premolar Static compressive force of 300N was applied to connector between 2nd premolar & 1st molar, and then von Mises stress, displacement and reaction force were obtained. The results were as follows : 1. In fixed partial denture, prosthesis under load on pontic was rotated around mesio-distal long axis of it from longual side to buccal, and simultaneously bended in buccal and gingival direction with mesial end deformed in gingival direction and distolingual end in occlusal. 2. Clinical crowns of abutments were bended in the same directions with those in which prosthesis deforms. Due to that, roots of anterior abutments were twisted in counterclockwise with concentration of shear stress on distal or distobuccal sides of their cervices, and that of posterior was in clockwise with concentration of shear stress on mesiobuccal side of it in the same level with anterior abutments. 3. In case that root length of the 2nd abutment was longer than that of the 1st abutment, its displacement and reaction force which means the force tooth exerts on the surrounding periodontal tissues were smaller but shear stress on itself was larger than in the case root length of 2nd abutment was shorter.

  • PDF

A Study on the Land Purchase Priority Measurement of the Riparian Areas in Yeongsan and Seomjin River Basin - Focusing on the Riparian Areas of the Juam Lake - (영산강·섬진강수계 수변구역 토지매수 우선순위 산정에 관한 연구 -주암호 수변구역을 사례로 -)

  • Shim, Yun-Jin;Cha, Jin-Yeol;Park, Yong-Su;Lee, Dong-Jin;Seo, Yun-Hee;Hong, Jin-Pyo;Cho, Dong-Gil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.173-184
    • /
    • 2014
  • Riparian areas are significant functional grounds for inhabiting ecological system on the river such as the self-regulation of the water quality and the foundation of important corridors. For such functional device to operate, consecutive land purchase scheme that prioritizes targeted areas with high pollutant load rate imposes sustainable development of the ecological riparian belt. The purpose of this study is focused on measuring the methodology for selecting land purchse order before establishing riparian belt in accordance with pollution loading estimation and the basin approach. The Yeongsan and Seomjin river which includes targeted areas of the land purchase have been classified into the large-medium-small(standard basin) influence areas based on their catchment rage, which than sub-divided the research area of Juam lake by 38 small basins and 223 units. Small basins with the high pollution load rates have been assessed as the first prioritized targets. For the second priority, the condition of the point pollutant sources, original area of the targets, original restored area were concerned. The final decision of the land purchase order targeted only those within 50 meter range from the basin. To validate the accumulated data, the on-site investigation went along the targeted zones, which the result shows that all prioritized areas included both point and non-point pollutant sources, and had not a small originally restored areas.

Prediction of State of Cutting Surfaces of Polymers by Analysis of Indentation Load-depth Curve (압입하중-변위곡선 분석을 통한 폴리머 소재의 절삭표면상태 예측에 관한 연구)

  • Jeon, Eun-Chae;Kim, Jae-Hyun;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.76-81
    • /
    • 2011
  • UV imprinting process can manufacture high-functional optical components with low cost. If hard polymers can be used as transparent molds at this process, the cost will be much lower. However, there are limited researches to predict the machinability and the burr of hard polymers. Therefore, a new method to predict them by analyzing load-depth curves which can be obtained by the instrumented indentation test was developed in this study. The load-depth curve contains elastic deformation and plastic deformation simultaneously. The ratio of the plastic deformation over the sum of the two deformation is proportional to the ductility of materials which is one of the parameters of the machinability and the burr. The instrumented indentation tests were performed on the transparent molds of the hard polymers and the values of ratio were calculated. The machinability and the burr of three kinds of hard polymers were predicted by the ratio, and the prediction was in agreement with the experimental results from the machined surfaces of the three kinds of hard polymers.

Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • This paper is presented to solve the buckling problem of functionally graded truncated conical shells subjected to displacement-dependent pressure which remains normal to the shell middle surface throughout the deformation process by the semi-analytical finite strip method. Material properties are assumed to be temperature dependent, and varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness shear flexibility with Sanders-type of kinematic nonlinearity. The element linear and geometric stiffness matrices are obtained using virtual work expression for functionally graded materials. The load stiffness also called pressure stiffness matrix which accounts for variation of load direction is derived for each strip and after assembling, global load stiffness matrix of the shell which may be un-symmetric is formed. The un-symmetric parts which are due to load non-uniformity and unconstrained boundaries have been separated. A detailed parametric study is carried out to quantify the effects of power-law index of functional graded material and shell geometry variations on the difference between follower and non-follower lateral buckling pressures. The results indicate that considering pressure stiffness which arises from follower action of pressure causes considerable reduction in estimating buckling pressure.

Parameter Analysis and Modeling of Walking Loads (보행하중의 매개변수 분석 및 모형화)

  • 이동근;김기철;최균효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.459-466
    • /
    • 2001
  • The floor vibration aspect for building structures which are in need of large open space are influenced by the interrelation between natural frequency and working loads. Structures with a long span and low natural frequency have a higher possibility of experiencing excessive vibration induced by dynamic excitation such as human activities. These excessive vibrations make the residents uncomfortable and the serviceability deterioration. Need formulation of loads data through actual measurement to apply walking loads that is form of dynamic load in structure analysis. The loads induced by human activities were classified into two types. First type is in place loads. the other type is moving loads. A series of laboratories experiments had been conducted to study the dynamic loads induced by human activities. The earlier works were mainly concerned to parameters study of dynamic loads. In this Paper, the walking loads have been directly measured by using the measuring plate in which two load cells were placed, the parameters, the load-time history of walking loads, and the dynamic load factors have been analyzed. Moreover, the shape of the harmonic loads which were gotten by decomposition the walking loads have been analyzed , and the walking loads modeling have been carried out by composition these harmonic loads derived by functional relation.

  • PDF

Standardization of Stiffness Test Method of Non-bearing Lightweight Wall for building (건축용 비내력 경량벽체의 정적 수평하중저항성 시험방법의 표준화)

  • Kim, Jin-Sik;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.185-186
    • /
    • 2015
  • The use of non-bearing lightweight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Lightweight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the stiffness (static horizontal load resistance) test method for lightweight walls by using the actual impact load obtained through the load analysis test conducted in the previous studies. The size of specimen was set up as height 2.4m and width 3.0m. Test apparatus and test methods were referred to BS 5234-2:1992. However, the loading level applied to the specimen was divided into 3 steps (3000N, 1000N, 500N) that can be applied selectively depending on the purpose of the wall. The deformation characteristics according to the same loading level were vary depending on the specimen's type, and the evaluation criteria for functional damage may vary depending on the material, method of construction, and purpose of wall. Therefore, we did not suggest unified evaluation criteria of the stiffness to the test results.

  • PDF

An experimental study on strengthening of vulnerable RC frames with RC wing walls

  • Kaltakci, M. Yasar;Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.691-710
    • /
    • 2012
  • One of the most popular and commonly used strengthening techniques to protect against earthquakes is to infill the holes in reinforced concrete (RC) frames with fully reinforced concrete infills. In some cases, windows and door openings are left inside infill walls for architectural or functional reasons during the strengthening of reinforced concrete-framed buildings. However, the seismic performance of multistory, multibay, reinforced concrete frames that are strengthened by reinforced concrete wing walls is not well known. The main purpose of this study is to investigate the experimental behavior of vulnerable multistory, multibay, reinforced concrete frames that were strengthened by introducing wing walls under a lateral load. For this purpose, three 2-story, 2-bay, 1/3-scale test specimens were constructed and tested under reversed cyclic lateral loading. The total shear wall (including the column and wing walls) length and the location of the bent beam bars were the main parameters of the experimental study. According to the test results, the addition of wing walls to reinforced concrete frames provided significantly higher ultimate lateral load strength and higher initial stiffness than the bare frames did. While the total shear wall length was increased, the lateral load carrying capacity and stiffness increased significantly.

Multi-walled Carbon Nanotube-Reinforced Hydroxyapatite Coating on Ti Substrates by Aerosol Deposition (에어로졸 증착법에 의해 티타늄 기판위에 제조된 다중벽 탄소나노튜브 강화 수산화아파타이트 코팅층)

  • Hahn, Byung-Dong;Park, Dong-Soo;Ryu, Jung-Ho;Choi, Jong-Jin;Yoon, Woon-Ha;Lee, Byung-Kuk;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.610-617
    • /
    • 2008
  • Multi-walled carbon nanotube(CNT) reinforced hydroxyapatite composite coating with a thickness of $5{\mu}m$ has been successfully deposited on Ti substrate using aerosol deposition(AD). The coating had a dense microstructure with no cracks or pores, showing good adhesion with the Ti substrate. Microstructural observation using field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM) showed that CNTs with original tubular morphology were found in the hydroxyapatite-CNT(HA-CNT) composite coating. Measurements of hardness and elastic modulus for the coating were performed by nanoindentation tests, indicating that the mechanical properties of the coating were remarkably improved by the addition of CNT to HA coating. Therefore, HA-CNT composite coating produced by AD is expected to be potentially applied to the coating for high load bearing implants.

Attention and Working Memory Task-Load Dependent Activation Increase with Deactivation Decrease after Caffeine Ingestion

  • Peng, Wei;Zhang, Jian;Chang, Da;Shen, Zhuo-Wen;Shang, Yuanqi;Song, Donghui;Ge, Qiu;Weng, Xuchu;Wang, Ze
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.199-209
    • /
    • 2017
  • Purpose: Caffeine is the most widely consumed psychostimulant. It is often adopted as a tool to modulate brain activations in fMRI studies. However, its pharmaceutical effect on task-induced deactivation has not been fully examined in fMRI. Therefore, the purpose of this study was to examine the effect of caffeine on both activation and deactivation under sustained attention. Materials and Methods: Task fMRI was acquired from 26 caffeine naive healthy volunteers before and after taking caffeine pill (200 mg). Results: Statistical analysis showed an increase in cognition-load dependent task activation but a decrease in load dependent de-activation after caffeine ingestion. Increase of attention and memory task activation and its load-dependence suggest a beneficial effect of caffeine on the brain even though it has no overt behavior improvement. The reduction of deactivation by caffeine and its load-dependence indicate reduced facilitation from task-negative networks. Conclusion: Caffeine affects brain activity in a load-dependent manner accompanied by a disassociation between task-positive network and task-negative network.

Water Workout Recovery Program on the Patient with Guillain-Barre Syndrome (부상회복 프로그램에 따라 실시한 Guillain-Barre 증후군 환자의 수중운동)

  • Park, No-Chul;Kim, Yong-Kwon
    • Journal of Korean Physical Therapy Science
    • /
    • v.6 no.3
    • /
    • pp.9-24
    • /
    • 1999
  • Guillain-Barre syndrome(GBS) is one of the common motor unit diseases and defined as acute postinfectious polyneuropathy, It is not known most effective medical intervention for GBS, but generally benefits from an intensive physical therapy program. In this report, hydrotherapy was applied for a patient with GBS to improve muscle power and functional abilities. Two weeks later, the patient's functional abilities, muscle power, and physical endurance were improved without complications. Since the hydrotherapy does not load maximally to the patient with GBS, the patient can exercise himself actively for the maximal tolerance. It is the reason of fast recovery. In summary, the hydrotherapy is important to the patient with GBS and it must apply to these patients more frequently.

  • PDF