• Title/Summary/Keyword: Functional fertilizer

Search Result 95, Processing Time 0.018 seconds

Effects of Water Deficit and UV-B Radiation on Accumulation of Functional Metabolites in Crops: A Review

  • Lim, Jung-Eun;Lee, Seul-Bi;Lee, Ye-Jin;Cho, Min-Ji;Yun, Hye-Jin;Lee, Deog-Bae;Hong, Suk-Young;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.409-419
    • /
    • 2016
  • With increasing social concerns for healthy food, the studies on the cultivation of crops to increase accumulation of functional metabolites in crops have been investigated. Accumulation of the metabolites in crops is highly affected by various types of stress, such as nutrient deficiency, water deficit (WD), extreme temperature and UV-B radiation as well as their own life cycle. This review summarizes the previous studies on the effects of environmental stresses, especially WD and UV-B radiation, on accumulation of functional metabolites in crops. UV-B radiation and WD during specific period (mainly at maturation stage) activates the adaptation and/or defense system in crops, thereby increasing biosynthesis of the metabolites. Although WD and UV-B radiation tend to decrease in crop yield, the decrease can be compensated by the production of high value crops having high content of functional metabolites.

Long-term Effects of Inorganic Fertilizer and Compost Application on Rice Sustainability in Paddy Soil

  • Lee, Chang Hoon;Park, Chang Young;Jung, Ki Youl;Kang, Seong Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • Sustainability index was calculated to determine the best management for rice productivity under long-term inorganic fertilizer management's practices. It is based on nutrient index, microbiological index and crop index related to sustainability as soil function. Indicators for calculating sustainability index were selected by the comparison of soil properties and rice response in paddy soil with fertilization. Total twenty two indicators were determined to assess nutrient index, microbiological index and crop index in order to compare the effect of different fertilization. The indices were applied to assess the sustainability with different inorganic fertilizer treatments such as control, N, NK, NP, NPK, NPK+Si, and NPK+Compost. The long-term application of compost with NPK was the highest sustainability index value because it increased nutrient index, microbial index and crop index. The use of chemical fertilizers resulted in poor soil microbial index and crop index, but the treatments like NP, NPK, and NPK+Si were maintained sustainability in paddy soil. These results indicate that application of organic and chemical fertilizer could be a good management to improve rice sustainability in paddy soil.

The Relation between Fertilization Practices and Functional Metabolites of Crops: A Review

  • Lim, Jung-Eun;Cho, Min-Ji;Yun, Hye-Jin;Ha, Sang-Keun;Lee, Deog-Bae;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.168-180
    • /
    • 2016
  • Various researches on the effects of fertilization levels on functional metabolites in crop have been conducted. This review summarizes the previous studies on the relation between fertilization supply and accumulation of metabolites (phenolics, carotenoids, ascorbic acid and glucosinolates) which function as antioxidants in crop. The accumulation of phenolic compounds is related to the activation of phenylalanine ammonia lyase (PAL) in phenylpropanoid pathway. Most of the previous studies discuss that low nitrogen (N) supply activates PAL, thereby increasing the synthesis of phenolics. Similarly, high N supply leads to a decrease in ascorbic acid because of the shading effect derived from the accelerated vegetative growth under high N level. Unlike the phenolics and ascorbic acid, carotenoids are accumulated with increasing N supply. In this regard, the previous studies explain that N is a main element closely associated with formation of key enzyme for the synthesis of carotenoids. Glucosinolates are generally increased under decreasing N supply and increasing S supply. Although the previous studies show similar trends about the accumulation of metabolites by nutrient level, they also suggest that many other factors including crop types, cultivars, cultural environment (water, temperature, light, etc.) influence the accumulation of functional metabolites in crop.

Varying Effects of Artificial Light on Plant Functional Metabolites (인공광 이용에 따른 작물의 기능성 물질의 차별적 증가)

  • Kim, Yang Min;Sung, Jwa Kyung;Lee, Ye Jin;Lee, Deog Bae;Yoo, Chul Hyun;Lee, Seul Bi
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • BACKGROUND: Many studies on artificial lighting have been recently performed to investigate its effect on agricultural products with good quality. This review was aimed at comparing the effects of artificial light on functional metabolites of the plants that were grown in greenhouses and growth chamber. METHODS AND RESULTS: It has been summarized that artificial lighting both in growth chambers and greenhouses caused different functional metabolites patterns depending on light quality. Even though the same light quality was applied, different patterns in metabolites were observed in different plant species. For the same species, supplementation of the same light quality in both growth chambers and greenhouses did cause different functional metabolites patterns. CONCLUSION: Artificial lighting caused different patterns in functional metabolites of plants grown in greenhouses and growth chambers, depending on the light quality and/or plant species. The manipulation of plant growth and functional metabolites would be possible by engineering the light qualities, but knowledge on proper lighting condition depending on plant species and growth places would be necessary.

Soil Chemistry (토양화학)

  • Lee, Sang-Eun;Hong, Chong-Woon;Kim, Yoo-Hak;Park, Chan-Won;Seo, Myung-Chul;Ok, Yong-Sik;Zhang, Yong-Seon;Jung, Won-Kyo;Jeong, Chang-Yoon;Hyun, Seung-Hun;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42
    • /
    • pp.53-101
    • /
    • 2009

Effects of Purifying Rice Paddy in Reducing Nutrient Loadings from Rice Paddy fields area using Free Range Ducks and Rice Bran (정화논에 의한 벼 친환경재배단지 발생 영양염류 저감효과)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Woo, Koan-Sik;Seo, Myung-Chul;Kang, Jong-Rae;Song, Seok-Bo;Oh, Byeong-Gun;Jung, Ki-Yeol;Yun, Eul-Soo;Choi, Kyung-Jin;Nam, Min-Hee;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.132-139
    • /
    • 2010
  • To manage the effluent nutrients amounts from rice paddy fields using free range ducks or rice bran, we evaluated the effects of a purifying paddy field which is no fertilizer, no pesticides, and dense rice seedling having a concept of constructed wetland. The experimental paddy field was located at downstream in the watershed of ducks using rice culture area in Milyang. The purifying paddy of land design were treated with seeding method, and vegetation type. As land design, direct seeding on plane, and direct seeding on high-ridge field in 2007. Planting rice only, and planting rice with water hyacinth were treated as vegetation type in purifying paddy in 2008. The purifying paddy fields were effective to reduce amount of T-N and T-P contents in effluent to 33.2~45.3%, and 53.1~55.4%, respectively. The direct seeding on high-ridge treatment, having long residence time of effluent water was more effective than plane plot as T-N 0.29 $g^{-1}m^{-2}d^{-1}$, and T-P 0.031 $g^{-1}m^{-2}d^{-1}$. The planting rice with water hyacinth treatment was effective than planting rice only as T-N 0.23 $g^{-1}m^{-2}d^{-1}$, and T-P 0.049 $g^{-1}m^{-2}d^{-1}$. The optimum area of purifying paddy field to treats all effluent were found out 3.2~4.7% of rice culture area using free range ducks, and rice bran at upper stream.

Effect of Long Term Fertilization on Microbial Biomass, Enzyme Activities, and Community Structure in Rice Paddy Soil

  • Lee, Chang Hoon;Kang, Seong Soo;Jung, Ki Youl;Kim, Pil Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.487-493
    • /
    • 2013
  • The effects of long-term fertilization on soil biological properties and microbial community structure in the plough layer in a rice paddy soil in southern Korea were investigated in relation to the continuous application of chemical fertilizers (NPK), straw based compost (Compost), combination these two (NPK + Compost) for last 40 years. No fertilization plot (Control) was installed for comparison. Though fertilization significantly improved rice productivity over control, the long-term fertilization of NPK and compost combination was more effective on increasing rice productivity and soil nutrient status than single application of compost or chemical fertilizer. All fertilization treatments had shown significant improvement in soil microbial properties, however, continuous compost fertilization markedly increased soil enzyme and microbial activities as compared to sole chemical fertilization. Results of microbial community structure, evaluated by EL-FAME (ester-linked fatty acid methyl esters) method, revealed big difference among Control, NPK, and Compost. However, both Compost and Compost+NPK treatments belonged to the same cluster after statistical analysis. The combined application of chemical fertilizer and organic amendments could be more rational strategy to improve soil nutrient status and promote soil microbial communities than the single chemical fertilizer or compost application.

Effect of Long Term Fertilization on Soil Carbon and Nitrogen Pools in Paddy Soil

  • Lee, Chang Hoon;Jung, Ki Youl;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak;Kim, Pil Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • Fertilizer management has the potential to promote the storage of carbon and nitrogen in agricultural soils and thus may contribute to crop sustainability and mitigation of global warming. In this study, the effects of fertilizer practices [no fertilizer (Control), chemical fertilizer (NPK), Compost, and chemical fertilizer plus compost] on soil total carbon (TC) and total nitrogen (TN) contents in inner soil profiles of paddy soil at 0-60 cm depth were examined by using long-term field experimental site at $42^{nd}$ years after installation. TC and TN concentrations of the treatments which included N input (NPK, Compost, NPK+Compost) in plow layer (0-15 cm) ranged from 19.0 to 26.4 g $kg^{-1}$ and 2.15 to 2.53 g $kg^{-1}$, respectively. Compared with control treatment, SOC (soil organic C) and TN concentrations were increased by 24.1 and 31.0%, 57.6 and 49.7%, and 72.2 and 54.5% for NPK, Compost, and NPK+Compost, respectively. However, long term fertilization significantly influenced TC concentration and pools to 30 cm depth. TC and TN pools for NPK, Compost, NPK+Compost in 0-30 cm depth ranged from 44.8 to 56.8 Mg $ha^{-1}$ and 5.78 to 6.49 Mg $ha^{-1}$, respectively. TC and TN pools were greater by 10.5 and 21.4%, 30.3 and 29.6%, and 39.9 and 36.3% in N input treatments (NPK, Compost, NPK+Compost) than in control treatment. These resulted from the formation and stability of aggregate in paddy soil with continuous mono rice cultivation. Therefore, fertilization practice could contribute to the storage of C and N in paddy soil, especially, organic amendments with chemical fertilizers may be alternative practices to sequester carbon and nitrogen in agricultural soil.

Production and Investigation of Parametric Effect on Bio-ethanol by Sapota Using Separation Technique

  • Muhammad Zuraiz;Syed Asad;Mohsin Ameen;Hafiz Miqdad Masood;Najaf Ali;Tashfeen Abid
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.234-239
    • /
    • 2023
  • Waste from the food is a challenge to the environment all over the globe, hence there is need to be recycled. There is a great deal of renewable energy potential in the biomass of vegetables and fruits, which can be used to generate power and steam, as well as fuel for human consumption and laboratory solvents. To maintain the nutritional, antioxidative, and functional qualities of sapota fruit, wine was made by fermenting it with wine yeast (Saccharomyces cerevisiae). The wine's approximate composition was as follows: total soluble solids, 2.38°Brix; total sugar, 3.8 g/100 ml tartaric acidity (TA), 1.29 g tartaric acidity total phenolics, 0.21 g/100 mL; pH, 3.02; acid/100 mL; pH, 3.02; total phenolics, 0.21 g/100 mL; 22 g/100 ml -carotene; 1.78 g/100 ml ascorbic acid mg/100 ml; 0.64 mg/100 ml lactic acid; and The ethanol percentage is 8.23% (v/v). The sapota wine was delicious. A DPPH-scavenging 2, 2-diphenyl-1picryl hydroxyl (DPPH) at a dosage of 250 g/ml, the activity was 46%. Infrared alcohols, phenethylamines, and other compounds were discovered via spectroscopy.