• Title/Summary/Keyword: Functional cysteine

Search Result 86, Processing Time 0.021 seconds

Acid and Chemical Induced Conformational Changes of Ervatamin B. Presence of Partially Structured Multiple Intermediates

  • Sundd, Monica;Kundu, Suman;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.143-154
    • /
    • 2002
  • The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the $\alpha+\beta$ class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0-2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly $\beta$-sheet conformation and shows a strong binding to 8-anilino-1-napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.

Generation and DNA Characterization of High-lysine Mutants by Biochemical Selection from Callus Culture of 'Hwayeongbyeo'

  • Yi Gi-Hwan;Choi Jun-Ho;Kim Kyung-Min;Jeong Eung-Gi;Park Hyang-Mi;Kim Doh-Hoon;Ku Yeon Chung;Eun Moo-Young;Kim Ho-Yeong;Nam Min-Hee
    • Plant Resources
    • /
    • v.8 no.1
    • /
    • pp.60-66
    • /
    • 2005
  • Lysine is the first essential amino acid for optimal nutrient quality in rice grain. For the narrow genetic diversities of lysine contents in rice, somaclonal variation was the source of mutation in our breeding program. Biochemical selection was conducted using 1 mM S-(2-aminoethyl) cysteine followed by two passages of 5 mM lysine plus threonine in the callus subculture medium. The lysine contents in endosperm of all progenies recovered from the biochemical selection were higher than those of their donor cultivar 'Hwayeongbyeo'. These elevated lysine levels of mutants were successfully transmitted to $M_4$ generation. The lysine contents in endosperm varied 3.85 to $4.80\%$ compare to their donor cultivar 'Hwayeongbyeo' was $3.85\%$. Three of high-lysine germplasms, Lys-l, Lys-2 and Lys-7 were selected by biochemical selection and rapid screening methods. DNA analysis showed that a new insertion of Tos 17 which mapped to rice chromosome 11 on the high-lysine mutant, Lys-2.

  • PDF

In Situ Detection and Differential Counts of Bifidobacterium spp. Using Bromocresol Green, a pH-dependent Indicator

  • Kim, Ki-Hwan;Shin, Won-Cheol;Park, Young-Seo;Yoon, Sung-Sik
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.99-103
    • /
    • 2007
  • The purpose of this study was to develop a simple detection method, possibly at the species-level, that allows for large-scale screening of bifidobacteria. Human fecal samples were plated on MRS-raffinose agar containing cysteine and neomycin sulfate, serving as selective pressure for bifidobacteria, and 0.003%(w/v) bromocresol green. All of the test strains grew well on this medium at $37{\pm}1^{\circ}C$, forming white colonies surrounded by yellow halos, which presented a sharp contrast against the green background. In this disc assay, the required incubation time to develop a yellowish zone varied with the species of Bifidobacterium that was tested, allowing for differential counts and easy identification at the species-level: 10-14 hr for B. bifidum, 20-22 hr for B. catenulatum and B. infantis. and 24-25 hr for B. longum and B. breve. No apparent color was observed for B. angulatum and B. adolescentis 28 hr after inoculation. To evaluate the results of pH indicator-based identification, individual isolates were subjected to a colony-PCR experiment with genus-specific primers. The amplified products from the isolates were in good accordance with those from the reference strains at a level of 95% agreement. These results suggest that the present method could be conveniently applied to cell counts, as well as to the preliminary identification of bifidobacteria from a variety of sample types including human feces, dairy products, and commercial probiotic supplements.

Optimization and production of protein hydrolysate containing antioxidant activity from tuna cooking juice concentrate by response surface methodology

  • Kiettiolarn, Mookdaporn;Kitsanayanyong, Lalitphan;Maneerote, Jirawan;Unajak, Sasimanas;Tepwong, Pramvadee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.6
    • /
    • pp.335-349
    • /
    • 2022
  • To optimize the hydrolysis conditions in the production of antioxidant hydrolysates from tuna cooking juice concentrate (TC) to maximize the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, TC containing 48.91% protein was hydrolyzed with Alcalase 2.4 L, and response surface methodology (RSM) was applied. The optimum hydrolysis conditions included a 2.2% (w/v) Alcalase concentration and 281 min hydrolysis time, resulting in the highest DPPH radical scavenging activity of 66.49% (0.98 µmol Trolox/mg protein). The analysis of variance for RSM showed that hydrolysis time was an important factor that significantly affected the process (p < 0.05). The effects of different drying methods (freeze drying, hot air drying, and vacuum drying) on the DPPH radical scavenging activity and amino acid (AA) profiles of TC hydrolysate (TCH) were evaluated. Vacuum-dried TCH (VD) exhibited an increase in DPPH radical scavenging activity of 81.28% (1.20 µmol Trolox/mg protein). The VD samples were further fractionated by ultrafiltration. The AA profiles and antioxidant activities in terms of the DPPH radical scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, ferric reducing antioxidant power, and ferrous ion chelating activity were investigated. Glutamic acid, glycine, arginine, and cysteine were the major AAs found in the TCH fractions. The highest DPPH radical scavenging activity was found in the VD-1 fraction (< 5 kDa). The VD-3 fraction (> 10 kDa) exhibited the highest ABTS radical scavenging activity and ferric reducing antioxidant power. The ferrous ion chelating activity was the highest in VD-1 and VD-2 (5 to 10 kDa). In conclusion, this study provided the optimal conditions to obtain high antioxidant activities through TCH production, and these conditions could provide a basis for the future application of TCH as a functional food ingredient.

The Advanced Analytical Method Through the Quantitative Comparative Study of Taurine in Feed Using LC-MS/MS

  • Seon, Yeong Jun;Seo, Hyung Ju;Yoon, Jiye;Cho, Hyunjeong;Hong, Sunghie;Lee, Seung Hwa;Na, Tae Woong
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.133-138
    • /
    • 2022
  • Taurine is a type of sulfur-containing amino acid having a sulfate functional group, that is biosynthesized from cysteine. It is mainly distributed in high concentrations in animal tissues and is known to have various effects such as osmotic pressure control, calcium control, anti-inflammatory, antioxidant, and hepatocellular protection. Also, taurine deficiency causes a variety of symptoms, including visual impairment. In particular, in the case of cats, taurine is not biosynthesized and must be supplied through food, so it is classified as an essential amino acid. In this study, an analysis method using mass spectrometry was developed instead of the commonly used derivatization method to quickly, environmentally, and precisely analyze taurine in various animal feeds. The developed analytical method showed good linearity (R2 > 0.99), accuracy (81.97-105.78%), and precision (0.07-12.37%). In addition, the developed method was further verified through quantitative comparison with the derivatization method. This developed method was used in the determination of taurine in 20 animal feed samples obtained from South Korea. The levels of taurine found ranged from 81.53 to 6,743.53 mg/kg. The developed analysis method will be used for the detection and quantification of taurine in domestic feed.

Analysis on the Components of the Vitex rotundifolia Fruit and Stem (순비기나무(Vitex rotundifolia) 열매와 줄기의 함유성분 분석)

  • Lee, Yang-Suk;Joo, Eun-Young;Kim, Nam-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.2
    • /
    • pp.184-189
    • /
    • 2008
  • This study was conducted to analyze components of the fruit and stem of Vitex rotundifolia as part of a study on the nutritional and functional materials, and the development of a functional food. General components of V. rotundifolia fruit are moisture 12.92%, carbohydrate 78.67%, crude protein 3.22%, crude fat 1.73% and 3.46% crude ash. V. rotundifolia stem was moisture 11.30%, carbohydrate 80.87%, crude protein 4.78%, crude fat 0.64 % and 2.41% crude ash. The content of V. rotundifolia reducing sugar was 646.07 mg% (fruit) and 1,547.97 mg% (stem). The total amount of free sugar was fruit 5.66 mg% and stem 90.79 mg%. The content of soluble protein was 3,268.12 mg% in fruit and 4,927.55 mg% in stem. The polyphenol compound content was 608.06 mg% and 808.06 mg%, respectively. Total amount of hydrolyzed amino acid of V. rotundifolia fruit and stem were 3,095.75 mg% and 2,135.84 mg%, while that of free amino acid of fruit and stem were 79.99 mg%, 81.20 mg%, among which cysteine (2,010.82 mg%) was the highest in the V. rotundifolia fruit. In the results of mineral analysis, the content of K was the highest in fruit (2,184.00 mg%) and stem (1,469.20 mg%).

Effect of Ursolic Acid on the Development of Mouse Embryonic Stem Cells under Hypoxia (저산소 상태에서 우르솔산이 배아줄기세포 성장에 미치는 효과)

  • Han, Gi Yeon;Park, Jae Hong;Oh, Keon Bong;Lee, Sei-Jung
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1223-1229
    • /
    • 2013
  • Ursolic acid (UA) a bio-active ingredient found in a variety of fruits and vegetables, and it has potent antioxidant activity. However, the role of UA in mouse embryonic stem (ES) cells is poorly understood. This study investigated the functional role of UA in regulating the development of mouse ES cells under hypoxia. Hypoxia did not exert a significant effect on the undifferentiated state of mouse ES cells. However, it induced reactive oxygen species (ROS) generation and increased the level of lactate dehydrogenase (LDH) production at 48 h of hypoxic exposure. Conversely, oxidative stress induced by hypoxia was significantly inhibited by UA ($30{\mu}M$) pretreatment. Hypoxia significantly decreased cell survival and the level of [$^3H$] thymidine incorporation, both of which recovered following pretreatment of UA. In addition, UA decreased the apoptotic effect of hypoxia by attenuating caspase-3 cleavage or by recovering cellular inhibition of the apoptotic protein (cIAP)-2 and Bcl-2 expression. We further found that UA decreased senescence-associated beta-galactosidase activity. We suggest that UA is a natural antioxidant and one of the functional modulators of hypoxia-induced survival, apoptosis, proliferation, and aging in mouse ES cells.

A Comparative Study of Gene Expression Patterns of Periodontal Ligament Cells and Gingival Fibroblasts using the cDNA Microarray (cDNA Microarray를 이용한 치주인대세포와 치은섬유아세포의 유전자 발현에 대한 연구)

  • Jeon, Chai-Young;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.205-221
    • /
    • 2004
  • Periodontal ligament(PDL) cells have been known as playing an important roles in periodontal regeneration and gingival fibroblasts are also important to periodontal regeneration by forming connective tissue attachment. There were rare studies about the gene expression patterns of PDL cells and gingival fibroblasts, therefore in this study, we tried cDNA microarray-based gene expression monitoring to explain the functional differences of PDL cells and gingival fibroblasts in vivo and to confirm the characteristics of PDL cells. Total RNA were extracted from PDL cells and gingival fibroblasts of same person and same passages, and mRNA were isolated from the total RNA using Oligotex mRNA midi kit(Qiagen) and then fluorescent cDNA probe were prepared. And microarray hybridization were performed. The gene expression patterns of PDL cells and gingival fibroblasts were quite different. About 400 genes were expressed more highly in the PDL cells than gingival fibroblasts and about 300 genes were more highly expressed in the gingival fibroblasts than PDL cells. Compared growth factor- and growth factor receptor-related gene expression patterns of PDL cells with gingival fibroblasts, IGF-2, IGF-2 associated protein, nerve growth factor, placental bone morphogenic protein, neuron-specific growth- associated protein, FGF receptor, EGF receptor-related gene and PDGF receptor were more highly expressed in the PDL cells than gingival fibroblasts. The results of collagen gene expression patterns showed that collagen type I, type III, type VI and type VII were more highly expressed in the PDL cells than gingival fibroblasts, and in the gingival fibroblasts collagen type V, XII were more highly expressed than PDL cells. The results of osteoblast-related gene expression patterns showed that osteoblast specific cysteine-rich protein were more highly expressed in the PDL cells than gingival fibroblasts. The results of cytoskeletal proteins gene expression patterns showed that a-smooth muscle actin, actin binding protein, smooth muscle myosin heavy chain homolog and myosin light chain were more highly expressed in the PDL cells than gingival fibrobalsts, and ${\beta}-actin$, actin-capping protein(${\beta}$ subunit), actin- related protein Arp3(ARP) and myosin class I(myh-1c) were more highly expressed in the gingival fibroblasts than PDL cells. Osteoprotegerin/osteoclastogenesis inhibitory factor(OPG/OCIF) was more highly expressed in the PDL cells than gingival fibroblasts. According to the results of this study, PDL cells and gingival fibroblasts were quite different gene expression patterns though they are the fibroblast which have similar shape. Therefore PDL cells & gingival fibroblasts are heterogeneous populations which represent distinct characteristics. If more studies about genes that were differently expressed in each PDL cells & gingival fibroblasts would be performed in the future, it would be expected that the characteristics of PDL cells would be more clear.

Analysis of metabolomic patterns in thoroughbreds before and after exercise

  • Jang, Hyun-Jun;Kim, Duk-Moon;Kim, Kyu-Bong;Park, Jeong-Woong;Choi, Jae-Young;Oh, Jin Hyeog;Song, Ki-Duk;Kim, Suhkmann;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1633-1642
    • /
    • 2017
  • Objective: Evaluation of exercise effects in racehorses is important in horseracing industry and animal health care. In this study, we compared metabolic patterns between before and after exercise to screen metabolic biomarkers for exercise effects in thoroughbreds. Methods: The concentration of metabolites in muscle, plasma, and urine was measured by $^1H$ nuclear magnetic resonance (NMR) spectroscopy analysis and the relative metabolite levels in the three samples were compared between before and after exercise. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA) and variable important plots and t-test was used for basic statistical analysis. Results: From $^1H$ NMR spectroscopy analysis, 35, 25, and 34 metabolites were detected in the muscle, plasma, and urine. Aspartate, betaine, choline, cysteine, ethanol, and threonine were increased over 2-fold in the muscle; propionate and trimethylamine were increased over 2-fold in the plasma; and alanine, glycerol, inosine, lactate, and pyruvate were increased over 2-fold whereas acetoacetate, arginine, citrulline, creatine, glutamine, glutarate, hippurate, lysine, methionine, phenylacetylglycine, taurine, trigonelline, trimethylamine, and trimethylamine N-oxide were decreased below 0.5-fold in the urine. The OPLS-DA showed clear separation of the metabolic patterns before and after exercise in the muscle, plasma, and urine. Statistical analysis showed that after exercise, acetoacetate, arginine, glutamine, hippurate, phenylacetylglycine trimethylamine, trimethylamine N-oxide, and trigonelline were significantly decreased and alanine, glycerol, inosine, lactate, and pyruvate were significantly increased in the urine (p<0.05). Conclusion: In conclusion, we analyzed integrated metabolic patterns in the muscle, plasma, and urine before and after exercise in racehorses. We found changed patterns of metabolites in the muscle, plasma, and urine of racehorses before and after exercise.

Induction of Metallothionein Gene by Laminin in Normal and Malignant Human Prostate Epithelial Cells (악성 단계별 인간 전립선 암세포에서 라미닌에 의한 metallothionein 유전자 발현유도 현상 연구)

  • Ock, Mee-Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.529-533
    • /
    • 2011
  • Metallothioneins (MT) are a group of low-molecular weight, cysteine-rich, intracellular proteins that are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins is associated with protection against DNA damage, oxidative stress, and apoptosis. Many studies have shown increased expression of MT in various human tumors, whereas MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. Using Northern blot analysis, we found that laminin induced expression of MT-1 in HSG and PC12 cells, which can be differentiated by laminin, but had no effect on MB-231, MDA-435, and PC-3 cells, which cannot be differentiated by laminin. In addition, we analyzed the expression level of the MT-1 gene in five prostate cancer cell lines possessing different metastatic potential. The expression of MT-1 in normal and less malignant cells (RWPE-1 and WPE1-NA22) was high and up-regulated by laminin, whereas the expression of MT-1 in WPE1-NB14, WPE1-NB11, and WPE1-NB26 cells (malignant) was extremely low and not elevated by laminin. These results suggest that the MT-1 gene is involved in laminin-mediated differentiation and affects the metastatic potential of tumor cells.