• Title/Summary/Keyword: Functional applications

Search Result 1,416, Processing Time 0.038 seconds

Recent Development of Differential Mobility Analyzers For Size-Classification of Nanoparticles and Their Applications to Nanotechnologies

  • Seol, Kwang-Soo;Yoshimichi Ohki;Kazuo Takeuchi
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.39-44
    • /
    • 2004
  • The present paper gives a review of the recent development of a differential mobility analyzer (DMA) available for both particle size measurements and production of monodisperse particles in the nanometer range. Operating principles of a general DMA are introduced as well as characteristics of highly functional DMAs such as those capable of classifying particles in a measurement range as broad as 1-1000nm at low pressures. Some examples of DMA applications are also described.

Potential Industrial Applications and Evolution of Carbohydrolases and Glycansucrases

  • Kim, Do-Man;Seo, Eun-Seong;Lee, Jin-Ha;Kang, Hee-Kyoung;Cho, Jae-Young
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.215-218
    • /
    • 2004
  • Dextrans make up a class of polysaccharides that are D-glucans of various structures with contiguous $\alpha$-1longrightarrow6 ~6 glycosidic linkages in the main chains and $\alpha$-1longrightarrow2, $\alpha$-1longrightarrow3, or $\alpha$-1longrightarrow4 branch glycosidic linkages, depending on the specificity of the particular dextransucrase. Glucansucrases that catalyze glucans synthesis from sucrose. When other carbohydrates, in addition to sucrose, are present in the enzyme digest, the enzyme transfers glucose to the carbohydrate acceptors in the secondary reaction that diverts some of the glucose from incorporation into glucan. Many carbohydrate acceptors have been recognized and the products that result are dependent on the particular enzyme and the structure of the particular acceptor. Because of these unique catalytic characteristics, various dextransucrases have many important industrial and medical uses. To improve the understanding of their action mode and extend their applications, this study describes mechanism of glucan synthesis and potential industrial uses of dextransucrases, and our recent findings on the structural, functional organization and directed evolution of the glucansucrases to offer for designing glucansucrases with improved properties.

  • PDF

Bioactive secondary metabolites in sea cucumbers and their potential to use in the functional food industry

  • KK Asanka Sanjeewa;KHINM Herath
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.69-86
    • /
    • 2023
  • The bioactive secondary metabolites produced by sea cucumbers are very diverse with differences in composition, linkages, molecular weight, and various functional properties. Due to their physicochemical properties, these bioactive molecules in sea cucumbers have found applications in various market segments such as functional foods and cosmetics. Sea cucumber side dishes are a prominent food item in traditional cuisine in East Asian countries such as South Korea, China, and Japan. In addition, many studies have reported that the consumption of sea cucumbers can reduce the risk of cardiovascular disease, the pathogenesis of cancer cells, chronic inflammatory diseases, etc. In particular, many studies have recently reported the potential of sea cucumbers to develop functional products to reduce inflammation, oxidative stress, diabetes, and cancer. Additionally, these bioactive properties associated with sea cucumbers make them ideal compounds for use as functional ingredients in functional food products. However, no report has yet reviewed the properties of sea cucumbers related to functional foods. Therefore, in this review, the primary focus is given to collecting published scientific data (from 2019 to 2023) on the bioactive properties of sea cucumbers relevant to the functional food industry.

Principal component analysis for Hilbertian functional data

  • Kim, Dongwoo;Lee, Young Kyung;Park, Byeong U.
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.149-161
    • /
    • 2020
  • In this paper we extend the functional principal component analysis for real-valued random functions to the case of Hilbert-space-valued functional random objects. For this, we introduce an autocovariance operator acting on the space of real-valued functions. We establish an eigendecomposition of the autocovariance operator and a Karuhnen-Loève expansion. We propose the estimators of the eigenfunctions and the functional principal component scores, and investigate the rates of convergence of the estimators to their targets. We detail the implementation of the methodology for the cases of compositional vectors and density functions, and illustrate the method by analyzing time-varying population composition data. We also discuss an extension of the methodology to multivariate cases and develop the corresponding theory.

Application of Electronic Nose for Quality Control of The High Quality and Functional Components (고품질 기능성 물질의 품질관리를 위한 전자코 응용)

  • Noh Bong-Soo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2006.04a
    • /
    • pp.40-54
    • /
    • 2006
  • It's not easy to detect the high quality and functional compounds for control quality of food materials. The electronic nose was an instrument, which comprised of an array of electronic chemical sensors with partial specificity and an appropriate pattern recognition system, capable of recognizing simple or complex odors. It can conduct fast analysis and provide simple and straightforward results and is best suited for quality control and process monitoring in the field of functional foods. Numbers of applications of an electronic nose in the functional food industry include discrimination of habitats for medicinal food materials, monitoring storage process, lipid oxidation, and quality control of food and/or processing with principal component analysis, neural network analysis and the electronic nose based on GC-SAW sensor. The electronic nose would be possibly useful for a wide variety of quality control in the functional food and plant cultivation when correlating traditional analytical instrumental data with sensory evaluation results or electronic nose data.

  • PDF

Functional Genomics in the Context of Biocatalysis and Biodegradation

  • Koh Sung-Cheol;Kim Byung-Hyuk
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.3-14
    • /
    • 2002
  • Functional genomics aims at uncovering useful information carried on genome sequences and at using it to understand the mechanisms of biological function. Elucidating the unknown biological functions of new genes based upon the genomics rationales will greatly speed up the extensive understanding of biocatalysis and biodegradation in biological world including microorganisms. DNA microarrays generate a system for the simultaneous measurement of the expression level of thousands of genes in a single hybridization assay. Their data mining (transcriptome) strategy has two categories: differential gene expression and coordinated gene expression. Furthermore, measurement of proteins (proteome) generates information on how the transcribed sequences end up as functional characteristics within the cell, and quantitation of metabolites yields information on how the functional proteins act to produce energy and process substrates (metabolome). Various composite functional genomics databases containing genetic, enzymatic and metabolic information have been developed and will contribute to the understanding of the life blue print and the new discoveries and practices in biocatalysis and biodegradation that could enrich their industrial and environmental applications.

  • PDF