• Title/Summary/Keyword: Functional activation

Search Result 932, Processing Time 0.043 seconds

ACTIVATION OF PI3K IS NOT SUFFICIENT, BUT REQUIRED FOR H-Ras-INDUCED INVASIVE PHENOTYPE IN MCFIOA CELLS

  • Shin, Il-Chung;Aree Moon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.156-156
    • /
    • 2001
  • We have previously shown that H-ras, but N-ras, induces an invasiveness and cell motility in human breast epithelial cells (MCFl0A), while both H-ras and N-ras induce transformed phenotype. It has been recently shown that phosphatidylinositol 3-kinase (PI3K) plays an important role on cell migration. In the present study, we wished to investigate the functional role of PI3K in H-ras-induced invasive phenotype in MCF10A cells.(omitted)

  • PDF

A musculotendon model including muscle fatigue

  • Jong kwang Lim;Nam, Moon-Hyon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.352-355
    • /
    • 1998
  • A musculotendon model is investigated to show muscle fatigue under the repeated functional electrical stimulation (FES). The normalized Hill-type model can predict the decline in muscle force. It consists of nonlinear activation and contraction dynamics including physiological concepts of muscle fatigue. A muscle fatigue as a function of the intracellular acidification, pHi is inserted into contraction dynamics to estimate the force decline. The computer simulation shows that muscle force declines in stimulation time and the change in the estimate of the optimal fiber length has an effect only on muscle time constant not on the steady-state tetanic force.

  • PDF

Augmentation of constitutive nf-$textsc{k}$b activation by bcl-2 in pc12 cells: implications for protection against oxidative stress

  • Jang, Jung-Hee;Surh, Young-Joon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.69.3-70
    • /
    • 2003
  • A substantial body of evidence indicates that reactive oxygen intermediates (ROIs) are implicated in pathogenesis of diverse human diseases, including cancer, diabetes and neurodegenerative disorders. Oxidative stress induced by ROIs often causes cell death via apoptosis that is regulated by a plenty of functional genes and their protein products. In the present work, we have investigated the role of bcl-2 in protecting against oxidative death induced by hydrogen peroxide in cultured rat pheochromocytoma (PC12) cells. (omitted)

  • PDF

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Neural Activation in the Somatosensory Cortex by Electrotactile Stimulation of the Fingers: A Human fMRI Study

  • Seok, Ji-Woo;Jang, Un-Jung;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.395-405
    • /
    • 2014
  • Objective: The aim of this study is to investigate 1) somatotopic arrangement of the second and third fingers in SI area 2) difference of neural activation in the SI area produced by stimulation with different frequencies 3) correlation between the intensity of tactile perception by different stimulus intensity and the level of brain activation measurable by means of fMRI. Background: Somatosensory cortex can obtain the information of environmental stimuli about "where" (e.g., on the left palm), "what" (e.g., a book or a dog), and "how" (e.g., scrub gently or scrub roughly) to organism. However, compared to visual sense, the neural mechanism underlying the processing of specific electrotactile stimulus is still unknown. Method: 10 right-handed subjects participated in this study. Non-painful electrotactile stimuli were delivered to two different finger tips of right hand. Functional brain images were collected from 3.0T MRI using the single-shot EPI method. The scanning parameters were as follows: TR and TE were 3000, 35ms, respectively, flip angle 60, FOV $24{\times}24cm$, matrix size $64{\times}64$, slice thickness 4mm (no gap). SPM5 was used to analyze the fMRI data. Results: Significant activations produced by the stimulation were found in the SI, SII, the subcentral gyrus, the precentral gyrus, and the insula. In all participants, statistically significant activation was observed in the contralateral SI area and the bilateral SII areas by the stimulation on the fingers but ipsilaterally dominant. The SI area representing the second finger generally located in the more lateral and inferior side than that of the third finger across all the subjects. But no difference in brain area was found for the stimulation of the fingers by different frequencies. And two typical patterns were observed on the relationship between the perceived psychological intensity and the amount of voxels in the primary sensory cortex during the stimulation. Conclusion: It was possible to discriminate the representation sites in the SI by electrotactile stimulation of digit2 and digit3. But we could not find the differences of the brain areas according to different stimulation frequencies from 3 to 300Hz. Application: The results of the study can provide a deeper understanding of somatosensory cortex and offer the information for tactile display for blinds.

Cognitive and Emotional Empathy in Young Adolescents: an fMRI Study

  • Kim, Eun Jin;Son, Jung-Woo;Park, Seong Kyoung;Chung, Seungwon;Ghim, Hei-Rhee;Lee, Seungbok;Lee, Sang-Ick;Shin, Chul-Jin;Kim, Siekyeong;Ju, Gawon;Park, Hyemi;Lee, Jeonghwan
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.31 no.3
    • /
    • pp.121-130
    • /
    • 2020
  • Objectives: We investigated the differences in cognitive and emotional empathic ability between adolescents and adults, and the differences of the brain activation during cognitive and emotional empathy tasks. Methods: Adolescents (aged 13-15 years, n=14) and adults (aged 19-29 years, n=17) completed a range of empathic ability questionnaires and were scanned functional magnetic resonance imaging (fMRI) during both cognitive and emotional empathy task. Differences in empathic ability and brain activation between the groups were analyzed. Results: Both cognitive and emotional empathic ability were significantly lower in the adolescent compared to the adult group. Comparing the adolescent to the adult group showed that brain activation was significantly greater in the right transverse temporal gyrus (BA 41), right insula (BA 13), right superior parietal lobule (BA 7), right precentral gyrus (BA 4), and right thalamus whilst performing emotional empathy tasks. No brain regions showed significantly greater activation in the adolescent compared to the adult group while performing cognitive empathy task. In the adolescent group, scores of the Fantasy Subscale in the Interpersonal Reactivity Index, which reflects cognitive empathic ability, negatively correlated with activity of right superior parietal lobule during emotional empathic situations (r=-0.739, p=0.006). Conclusion: These results strongly suggest that adolescents possess lower cognitive and emotional empathic abilities than adults do and require compensatory hyperactivation of the brain regions associated with emotional empathy or embodiment in emotional empathic situation. Compensatory hyperactivation in the emotional empathy-related brain areas among adolescents are likely associated with their lower cognitive empathic ability.

The New Finding on BOLD Response of Motor Acupoint KI6(照海) by fMRI (fMRI를 이용하여 수지굴신운동(手指屈伸運動)과 조해(照海)(KI6) 자침(刺鍼)에 의(依)한 대뇌운동피질(大腦運動皮質)의 활성변화(活性變化)에 관(關)한 비교(比較) 연구(硏究))

  • Kwon, Cheol-hyeon;Lee, Jun-beom;Hwang, Min-seob;Yoon, Jong-hwa
    • Journal of Acupuncture Research
    • /
    • v.21 no.6
    • /
    • pp.177-186
    • /
    • 2004
  • Introduction : Recent studies Suggested that there is a strong correlation between acupuncture stimulation and its related cortical activation. Anther study showed that either positive or negative BOLD effects could be observed depending on anatomical structure in acupuncture stimulation. In ttis study, we investigated a new acupoint $KI_6$ (照海), which was known as motor-related acupoint and obtained an evidence that the stimulation of $KI_6$ resulted in either negative or positive BOLD response to stimulation. Methods & Results : 1. Subjects and paradigms : Two separate stimulation paradigms were performed on five healthy (aged 22-23 yrs) in this study. First, the paradigm of acupuncture stimulation was that the acupuncture needle was inserted in acupoints $KI_6$, which is located in lateral side of the foot and then continuously twisted(補瀉를 除外한 捻轉法) for 70 seconds for 10 cycles of activation. During rest period (70 seconds), the needle was completed removed from acupoint. Total 60 cycles were performed and 10 images were obtained per cycle. Second, nonacupoint was randomly selected and the same paradigm was performed as acupoint stimulation. The stimulation protocol comprised 10 cycles of alternating. activation and rest (10 images per cycle). Total 60 cycles were performed and each cycle take about 1.5 sec for motor task. Subjects take an at least 15 minutes break before starting anther paradigm. 2. fMRI mapping : Multi-slice functional images were obtained on a 1.5T Magnetom Vision MRI scanner (Simens Medical, Erlangen, Germany) equipped with high performance whole-body gradients. The BOLD T2 * - weighted images were acquired with acho planar imaging sequence (TR = 1.2 sec, TE = 60 msec, and flip angle = $90_{\circ}$). The other sequence parameter are : FOV = 210 mm, matrix=$64{\times}128$ or $64{\times}64$, slice number=10 and slice thickness = 5 or 8 mm. the anatomic images were obtained with Spin-echo T1-weighted images. The resulting images were then anaiyzed with STIMULATE (CMRR, U. of Minnesota) to generate functional maps using a student T-test (p < 0.005) and cluster analysis. Both positive and negative response were evaluated. Conclusions : We have observed the activation of the motor cortex by stimulating motor-related acupoint ($KI_6$). Among five subjects, negative BOLD response was shown in four and positive response in one. All subjects showed positive response to conventional finger flexion-extension task. To understand the detailed mechanisms of correlation between acupuncture stimulation and BOLD fMRI changes and two typs of response, further study strongly required.

  • PDF