• Title/Summary/Keyword: Functional activation

Search Result 926, Processing Time 0.032 seconds

Comparison of Cervical Musculoskeletal Kinematics in Two Different Postures of Primate During Voluntary Head Tracking

  • Park, Hyeonki;Emily Keshner;Barry W. Peterson
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1140-1147
    • /
    • 2003
  • We have examined the effect on neck-muscle activation of altering whole body posture. A Rhesus monkey (Macaca mulatta) was trained to produce sinusoidal (0.25 Hz) head tracking movements in the sagittal plane when seated with trunk and head vertical or while standing in the quadrupedal position. Video-fluoroscopic images of cervical vertebral motion, and electromyographic (EMG) responses were recorded simultaneously. Results demonstrated that vertebral motion varied with body posture, occurring synchronously between all joints in the upright position and primarily at skull-$C_1$ when in the quadrupedal position. Muscle EMG activation was significantly greater (P<0.001) in the quadrupedal position than when upright for all muscles except semispinalis cervicis. Peak activation of all the muscles occurred prior to peak head extension in the quadrupedal position, suggesting synchronous activity between muscles. Data suggest that, when upright, muscles were activated in functional groupings defined by their anatomical arrangement. In the quadrupedal position, gravity acting on the horizontally oriented head produced greater activation and a collective response of the muscles.

A Comprasion of the Activation of Mirror Neurons Induced by Action Observation between Simple and Complex Hand Movement

  • Lee, Mi Young;Kim, Ju Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.3
    • /
    • pp.157-160
    • /
    • 2019
  • Purpose: We compared the activation pattern of the mirror neurons (MN) between two types of hand movement according to action observation using functional MRI. Methods: Twelve right-handed healthy subjects (5 male and 7 female, mean age $21.92{\pm}2.02years$) participated in the experiment. During fMRI scanning, subjects underwent two different stimuli on the screen: 1) video clips showing repeated grasping and releasing of the ball via simple hand movement (SHM), and (2) video clips showing an actor performing a Purdue Pegboard test via complex hand movement (CHM). paired t-test in statistical parametric mapping (SPM) was used to compare the activation differences between the two types of hand movement. Results: CHM as compared with the SHM produced a higher blood oxygen level dependent (BOLD) signal response in the right superior frontal gyrus, left inferior and superior parietal lobules, and lingual gyrus. However, no greater BOLD signal response was found by SHM compared with CHM (FWE corrected, p<0.05). Conclusion: Our findings provided that the activation patterns for observation of SHM and CHM are different. CHM also elicited boarder or stronger activations in the brain, including inferior parietal lobule called the MN region.

Anterior Cingulate Cortex and Amygdala Dysfunction Among Patients with Alcohol Dependency During Exposure to Negative Emotional Stimuli

  • Park, Mi-Sook
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.103-112
    • /
    • 2018
  • This study aimed to identify specific psychological and brain activation responses relating to the processing of negative emotions in patients with alcohol dependency. The authors hypothesized that patients with alcohol dependency would demonstrate the abnormal functioning of brain regions involved in negative emotions. Eleven male patients diagnosed with alcohol dependence in an inpatient alcohol treatment facility and 13 social drinkers with similar demographics were scanned using functional magnetic resonance imaging (fMRI) as they viewed film clips that evoked negative emotions. During exposure to negative emotional stimuli, the control group evinced significantly greater activity in the right anterior cingulate cortex (ACC) in comparison to patients with alcohol dependency. Correlation analyses demonstrated a negative association in the relationship between beta values from the right ACC and amygdala in participants classified in the control group. No statistically significant relationship was observed for blood oxygenation level-dependent (BOLD) changes between the two regions in the patient group during the elicitation of negative emotions. On the other hand, patients exhibited a greater activation of the amygdala as negative emotions were induced. These results suggest that alcoholism presents pathophysiology of brain activation that is distinct from the responses of healthy individuals functioning as controls.

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Prefrontal Cortex Activation during Diaphragmatic Breathing in Women with Fibromyalgia: An fNIRS Case Report

  • Hyunjoong Kim;Jihye Jung;Seungwon Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.334-339
    • /
    • 2023
  • Objective: The present study is designed to delve deeper into the realm of fibromyalgia (FM) symptom management by investigating the effects of diaphragmatic breathing on the prefrontal cortex (PFC) in women diagnosed with FM. Using functional near-infrared spectroscopy (fNIRS), the study aims to capture real-time PFC activation patterns during the practice of diaphragmatic breathing. The overarching objective is to identify and understand the underlying neural mechanisms that may contribute to the observed clinical benefits of this relaxation technique. Design: A case report Methods: To achieve this, a twofold approach was adopted: First, the patient's breathing patterns were meticulously examined to detect any aberrations. Following this, fNIRS was employed, focusing on the activation dynamics within the PFC. Results: Our examination unveiled a notable breathing pattern disorder inherent to the FM patient. More intriguingly, the fNIRS analysis offered compelling insights: the ventrolateral prefrontal cortex (VLPFC) displayed increased activation. In stark contrast, regions of the anterior prefrontal cortex (aPFC) and orbitofrontal cortex (OFC) manifested decreased activity, especially when benchmarked against typical activations seen in healthy adults. Conclusions: These findings, derived from a nuanced examination of FM, underscore the condition's multifaceted nature. They highlight the imperative to look beyond conventional symptomatology and appreciate the profound neurological and physiological intricacies that define FM.

Immune-enhancing Activity of Paeonia lactiflora through TLR4-dependent Activation of p38, JNK, and ERK1/2 RAW264.7 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.47-47
    • /
    • 2023
  • Paeonia lactiflora roots (PLR) are a medicinal plant widely used for treating inflammatory diseases. However, PLR has been recently reported to increase the production of proinflammatory mediators and activates phagocytosis in macrophages. Thus, in this study, we tried to verify the macrophage activation of PLR and elucidate its mechanism of action. PLR upregulated the production of proinflammatory mediators and activated phagocytosis in RAW264.7 cells. However, these effects were reversed by inhibition of TLR2/4. In addition, the inhibition of p38, JNK, and ERK1/2 reduced the PLR-mediated production of proinflammatory mediators, and the PLR-mediated activation of p38, JNK, and ERK1/2 was blocked by the TLR4 inhibition. These findings indicate that PLR may activate macrophages through TLR4-dependent activation of p38, JNK, and ERK1/2. These indicate that PLR has immunostimulatory activity. Thus, it is believed that PLR can be used as a functional food agent that enhances the immune system.

  • PDF

Convergence Study of Brain Activity by Dominant Hand Using functional near-infrared spectroscopy(fNIRS) (기능적 근적외선 분광법(fNIRS)을 이용한 우세손에 따른 뇌 활성화도에 대한 융합 연구)

  • Kim, Mi Kyeong;Park, Sun Ha;Park, Hae Yean
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.323-330
    • /
    • 2021
  • In this study, we intended to examine the difference in brain activation due to dominant and non-dominant hands using functional near-infrared spectroscopy(fNIRS) in 10 healthy adults. Box & Block Test(BBT) was conducted under two conditions: dominant hand and non-dominant hand. During the experiment, brain activity was measured using fNIRS and signals were analyzed using nirsLAB v2019.04 software after the experiment was completed. As a result, 6 out of 10 people showed activation of the cerebral hemisphere related to the dominant hand, and only 3 out of 10 people showed activation of the cerebral hemisphere related to the non-dominant hand. In other words, both dominant and non-dominant hand cconfirmed that the cerebral hemispheres related to dominant hands were more active. Therefore, it is believed that fNIRS can be used as a fundamental data applicable to children with sensory processing disorders that are difficult to identify dominant hand.

Effect of oxyfluorination on activated electrospun carbon nanofibers for $CO_2$ storage (함산소불소화 효과에 의한 전기방사 활성탄소나노섬유의 $CO_2$ 저장)

  • Bai, Byong Chol;Kim, Jong Gu;Im, Ji Sun;Lee, Young-Seak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.219.2-219.2
    • /
    • 2011
  • The oxyfluorination effects of electrospun carbon nanofibers (OFACFs) were investigated for $CO_2$ storage. Carbon nanofibers were prepared form poly acrylonitrile / N,N-dimethylformamide solution through electrospinning method and heat treatment. Chemical activation of carbon nanofibers were carried out in order to improve the pore structure. And the surface modification of activated carbon nanofibers was conducted by oxyfluorination to improve the $CO_2$ storage on effect of introduced functional groups. The samples were labeled CF (electrospun carbon nanofiber), ACF (activated carbon nanofibers), OFACF-1 ($F_2:O_2$ = 3:7), OFACF-2 ($F_2:O_2$ = 5:5) and OFACF-3 ($F_2:O_2$ = 7:3). The functional group of OFACFs was investigated by x-ray photoelectron spectroscopy analysis. The specific surface area, pore volume and pore size of OFACFs were calculated and pore shape was estimated by the BET equation. Through the adsorption isotherm, the specific surface area and pore volume significantly decreased by oxyfluorination.

  • PDF

Understanding of Neural Mechanism of Mood Disorders : Focused on Neuroimaging Findings (기분장애 뇌신경기저에 대한 이해 : 뇌영상 연구를 중심으로)

  • Kim, Yoo-Ra;Lee, Kyoung-Uk
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • Mood disorder is unlikely to be a disease of a single brain region or a neurotransmitter system. Rather, it is now generally viewed as a multidimensional disorder that affects many neural pathways. Growing neuroimaging evidence suggests the anterior cingulate-pallidostriatal-thalamic-amygdala circuit as a putative cortico-limbic mood regulating circuit that may be dysfunctional in mood disorders. Brain-imaging techniques have shown increased activation of mood-generating limbic areas and decreased activation of cortical areas in major depressive disorder(MDD). Furthermore, the combination of functional abnormalities in limbic subcortical neural regions implicated in emotion processing together with functional abnormalities of prefrontal cortical neural regions probably result in the emotional lability and impaired ability to regulate emotion in bipolar disorder. Here we review the biological correlates of MDD and bipolar disorder as evidenced by neuroimaging paradigms, and interpret these data from the perspective of endophenotype. Despite possible limitations, we believe that the integration of neuroimaging research findings will significantly advance our understanding of affective neuroscience and provide novel insights into mood disorders.

Correlation between Faster Response Time and Functional Activities of Brain Regions during Cognitive Time Management (인지적 시간관리에 필요한 기능적 뇌 활성 영역과 반응시간의 상관관계)

  • Park, Ji-Won;Shin, Hwa-Kyung;Jang, Sung-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • Purpose: This study was designed to determine the correlation between faster response time and functional activities of brain regions during cognitive time management. Methods: Twelve healthy subjects participated in this experiment. Subjects performed the serial reaction time task (SRTT), which was designed by the Superlab program, during fMRI scanning. When the 'asterisk' appeared in the 4 partition spaces on the monitor, the subject had to press the correct response button as soon as possible. Results: fMRI results showed activation of the left primary sensorimotor cortex, both premotor areas, the supplementary motor area, posterior parietal cortex and cerebellum. There were significant correlations, from moderate to strong, between faster reaction time and BOLD signal intensity in activated areas. Conclusion: These results suggest that motor skill learning to be needed cognitive time management is associated with greater activation of large scale sensorimotor networks.