• Title/Summary/Keyword: Functional Prediction

Search Result 307, Processing Time 0.034 seconds

Prediction of concrete strength using serial functional network model

  • Rajasekaran, S.;Lee, Seung-Chang
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.83-99
    • /
    • 2003
  • The aim of this paper is to develop the ISCOSTFUN (Intelligent System for Prediction of Concrete Strength by Functional Networks) in order to provide in-place strength information of the concrete to facilitate concrete from removal and scheduling for construction. For this purpose, the system is developed using Functional Network (FN) by learning functions instead of weights as in Artificial Neural Networks (ANN). In serial functional network, the functions are trained from enough input-output data and the input for one functional network is the output of the other functional network. Using ISCOSTFUN it is possible to predict early strength as well as 7-day and 28-day strength of concrete. Altogether seven functional networks are used for prediction of strength development. This study shows that ISCOSTFUN using functional network is very efficient for predicting the compressive strength development of concrete and it takes less computer time as compared to well known Back Propagation Neural Network (BPN).

Determinants of Functional MicroRNA Targeting

  • Hyeonseo Hwang;Hee Ryung Chang;Daehyun Baek
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • MicroRNAs (miRNAs) play cardinal roles in regulating biological pathways and processes, resulting in significant physiological effects. To understand the complex regulatory network of miRNAs, previous studies have utilized massivescale datasets of miRNA targeting and attempted to computationally predict the functional targets of miRNAs. Many miRNA target prediction tools have been developed and are widely used by scientists from various fields of biology and medicine. Most of these tools consider seed pairing between miRNAs and their mRNA targets and additionally consider other determinants to improve prediction accuracy. However, these tools exhibit limited prediction accuracy and high false positive rates. The utilization of additional determinants, such as RNA modifications and RNA-binding protein binding sites, may further improve miRNA target prediction. In this review, we discuss the determinants of functional miRNA targeting that are currently used in miRNA target prediction and the potentially predictive but unappreciated determinants that may improve prediction accuracy.

Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

  • Lee, Sang Uck
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2276-2280
    • /
    • 2013
  • The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry.

A Prediction Model for Functional Recovery After Stroke (뇌졸중 환자의 기능회복에 대한 예측모델)

  • Won, Jong-Im;Lee, Mi-Young
    • Physical Therapy Korea
    • /
    • v.17 no.3
    • /
    • pp.59-67
    • /
    • 2010
  • Mortality rates from stroke have been declining. Because of this, more people are living with residual disability. Rehabilitation plays an important role in functional recovery of stroke survivors. In stroke rehabilitation, early prediction of the obtainable level of functional recovery is desirable to deliver efficient care, set realistic goals, and provide appropriate discharge planning. The purpose of this study was to identify predictors of functional outcome after stroke using inpatient rehabilitation as measured by Functional Independence Measure (FIM) total scores. Correlation and stepwise multiple regression analyses were performed on data collected retrospectively from two-hundred thirty-five patients. More than moderate correlation was found between FIM total scores at the time of hospital admission and FIM total scores at the time of discharge from the hospital. Significant predictors of FIM at the time of discharge were FIM total scores at the time of hospital admission, age, and onset-admission interval. The equation was as follows: expected discharge FIM total score = $76.12+.62{\times}$(admission FIM total score)-$.38{\times}(age)-.15{\times}$(onset-admission interval). These findings suggest that FIM total scores at the time of hospital admission, age, and onset-admission interval are important determinants of functional outcome.

Development and Application of Protein-Protein interaction Prediction System, PreDIN (Prediction-oriented Database of Interaction Network)

  • 서정근
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2002.06a
    • /
    • pp.5-23
    • /
    • 2002
  • Motivation: Protein-protein interaction plays a critical role in the biological processes. The identification of interacting proteins by bioinformatical methods can provide new lead In the functional studies of uncharacterized proteins without performing extensive experiments. Results: Protein-protein interactions are predicted by a computational algorithm based on the weighted scoring system for domain interactions between interacting protein pairs. Here we propose potential interaction domain (PID) pairs can be extracted from a data set of experimentally identified interacting protein pairs. where one protein contains a domain and its interacting protein contains the other. Every combinations of PID are summarized in a matrix table termed the PID matrix, and this matrix has proposed to be used for prediction of interactions. The database of interacting proteins (DIP) has used as a source of interacting protein pairs and InterPro, an integrated database of protein families, domains and functional sites, has used for defining domains in interacting pairs. A statistical scoring system. named "PID matrix score" has designed and applied as a measure of interaction probability between domains. Cross-validation has been performed with subsets of DIP data to evaluate the prediction accuracy of PID matrix. The prediction system gives about 50% of sensitivity and 98% of specificity, Based on the PID matrix, we develop a system providing several interaction information-finding services in the Internet. The system, named PreDIN (Prediction-oriented Database of Interaction Network) provides interacting domain finding services and interacting protein finding services. It is demonstrated that mapping of the genome-wide interaction network can be achieved by using the PreDIN system. This system can be also used as a new tool for functional prediction of unknown proteins.

  • PDF

Generating Complicated Models for Time Series Using Genetic Programming

  • Yoshihara, Ikuo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.146.4-146
    • /
    • 2001
  • Various methods have been proposed for the time series prediction. Most of the conventional methods only optimize parameters of mathematical models, but to construct an appropriate functional form of the model is more difficult in the first place. We employ the Genetic Programming (GP) to construct the functional form of prediction models. Our method is distinguished because the model parameters are optimized by using Back-Propagation (BP)-like method and the prediction model includes discontinuous functions, such as if and max, as node functions for describing complicated phenomena. The above-mentioned functions are non-differentiable, but the BP method requires derivative. To solve this problem, we develop ...

  • PDF

In Silico Functional Assessment of Sequence Variations: Predicting Phenotypic Functions of Novel Variations

  • Won, Hong-Hee;Kim, Jong-Won
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.166-172
    • /
    • 2008
  • A multitude of protein-coding sequence variations (CVs) in the human genome have been revealed as a result of major initiatives, including the Human Variome Project, the 1000 Genomes Project, and the International Cancer Genome Consortium. This naturally has led to debate over how to accurately assess the functional consequences of CVs, because predicting the functional effects of CVs and their relevance to disease phenotypes is becoming increasingly important. This article surveys and compares variation databases and in silico prediction programs that assess the effects of CVs on protein function. We also introduce a combinatorial approach that uses machine learning algorithms to improve prediction performance.

Fucntional Prediction Method for Proteins by using Modified Chi-square Measure (보완된 카이-제곱 기법을 이용한 단백질 기능 예측 기법)

  • Kang, Tae-Ho;Yoo, Jae-Soo;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.332-336
    • /
    • 2009
  • Functional prediction of unannotated proteins is one of the most important tasks in yeast genomics. Analysis of a protein-protein interaction network leads to a better understanding of the functions of unannotated proteins. A number of researches have been performed for the functional prediction of unannotated proteins from a protein-protein interaction network. A chi-square method is one of the existing methods for the functional prediction of unannotated proteins from a protein-protein interaction network. But, the method does not consider the topology of network. In this paper, we propose a novel method that is able to predict specific molecular functions for unannotated proteins from a protein-protein interaction network. To do this, we investigated all protein interaction DBs of yeast in the public sites such as MIPS, DIP, and SGD. For the prediction of unannotated proteins, we employed a modified chi-square measure based on neighborhood counting and we assess the prediction accuracy of protein function from a protein-protein interaction network.

Correlation of elastic input energy equivalent velocity spectral values

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.957-976
    • /
    • 2015
  • Recently, two energy-based response parameters, i.e., the absolute and the relative elastic input energy equivalent velocity, have been receiving a lot of research attention. Several studies, in fact, have demonstrated the potential of these intensity measures in the prediction of the seismic structural response. Although some ground motion prediction equations have been developed for these parameters, they only provide marginal distributions without information about the joint occurrence of the spectral values at different periods. In order to build new prediction models for the two equivalent velocities, a large set of ground motion records is used to calculate the correlation coefficients between the response spectral values corresponding to different periods and components of the ground motion. Then, functional forms adopted in models from the literature are calibrated to fit the obtained data. A new functional form is proposed to improve the predictions of the considered models from the literature. The components of the ground motion considered in this study are the two horizontal ones only. Potential uses of the proposed equations in addition to the prediction of the correlation coefficients of the equivalent velocity spectral values are shown, such as the prediction of derived intensity measures and the development of conditional mean spectra.

RAM Prediction of Signaling Interlocking System for AREX (공항철도 신호시스템 전자연동장치에 대한 RAM 예측)

  • Song, Mi-Ok;Lim, Sung-Soo;Lee, Chang-Hwan;Kwon, Min-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.255-261
    • /
    • 2007
  • In this paper we introduce the method, procedure and result of RAM prediction for interlocking system which is applied for AREX signaling system. For RAM prediction, we breakdown the interlocking system to the LRU level and select the LRUs of which failure can cause the service delay. The prediction of reliability is based on the Reliability Block Diagram which is the functional diagram composed of selected LRUs and finally, the availability of interlocking system is estimated from the combination of reliability and maintainability.

  • PDF