• Title/Summary/Keyword: Functional Layer

Search Result 683, Processing Time 0.025 seconds

Interface Study of the Intermediate Connectors in Tandem Organic Devices

  • Tang, Jian-Xin;Lee, Shuit-Tong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.225-228
    • /
    • 2009
  • We have demonstrated several effective intermediate connectors in tandem organic light-emitting devices (OLEDs) using doped or nondoped organic p-n heterojunction. The influence of n-type or p-type organic layer in intermediate connectors on device performance has been investigated based on the understanding of interfacial electronic structures.

  • PDF

Highly Stable Photoluminescent and Magnetic Multilayers Using Nucleophilic Substitution Reaction in Organic Media

  • Jo, Jin-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.262-262
    • /
    • 2010
  • We introduce a novel and efficient strategy for producing free-standing functional films via photo-crosslinking and electrostatic layer-by-layer (LbL) assembly, which can allow the buildup of hydrophilic multilayers onto hydrophobic surfaces. Hydrophobic multilayers were deposited on ionic substrates by a photo-crosslinking LbL process using photo-crosslinkable polymers. The photo-crosslinked surface was converted to an anionic surface by excess UV light irradiation. This treatment allowed also the stable adhesion between metal electrode or cationic polyelectrolyte and hydrophobic multilayers. After dissolving the ionic substrates in water, the formed free-standing films exhibited unique functionalities of inserted components within hydrophobic and/or hydrophilic multilayers.

  • PDF

Synthesis of Microaglae-Capturing Magnetic Microcapsule Using CaCO3 Microparticles and Layer-by-Layer Coating

  • Lee, Young-Hee;Seo, Jung-Cheol;Oh, You-Kwan;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.376-380
    • /
    • 2018
  • Microalgae produce not only lipids for biodiesel production but also valuable biochemicals which are often accumulated under cellular stress mediated by certain chemicals. While the microcarriers for the application of drug delivery systems for animal cells are widely studied, their applications into microalgal research or biorefinery are rarely investigated. Here we develope dual-functional magnetic microcapsules which work not only as flocculants for microalgal harvesting but also potentially as microcarriers for the controlled release of target chemicals stimulating microalgae to enhance the accumulation of valuable chemicals. Magnetic microcapsules are synthesized by layer-by-layer(LbL) coating of PSS-PDDA on $Fe_3O_4$ nanoparticle-embedded $CaCO_3$ microparticles followed by removing $CaCO_3$ sacrificial templates. The positively charged magnetic microcapsules flocculate microalgae by electrostatic interaction which are sequentially collected by the magnetophoretic separation. The microcapsules with a polycationic outer layer provide efficient binding sites for negatively charged microalgae and by that means are further utilized as a chemical-delivery and flocculation system for microalgal research and biorefineries.

A Framework for Universal Cross Layer Networks

  • Khalid, Murad;Sankar, Ravi;Joo, Young-Hoon;Ra, In-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.239-247
    • /
    • 2008
  • In a resource-limited wireless communication environment, various approaches to meet the ever growing application requirements in an efficient and transparent manner, are being researched and developed. Amongst many approaches, cross layer technique is by far one of the significant contributions that has undoubtedly revolutionized the way conventional layered architecture is perceived. In this paper, we propose a Universal Cross Layer Framework based on vertical layer architecture. The primary contribution of this paper is the functional architecture of the vertical layer which is primarily responsible for cross layer interaction management and optimization. The second contribution is the use of optimization cycle that comprises awareness parameters collection, mapping, classification and the analysis phases. The third contribution of the paper is the decomposition of the parameters into local and global network perspective for opportunistic optimization. Finally, we have shown through simulations how parameters' variations can represent local and global views of the network and how we can set local and global thresholds to perform opportunistic optimization.

Influence of post-annealing temperature on double layer ZTO/GZO deposited by magnetron co-sputtering

  • Oh, Sung Hoon;Cho, Sang Hyun;Jung, Jae Heon;Kang, Sae Won;Cheong, Woo Seok;Lee, Gun Hwan;Song, Pung Keun
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.140-144
    • /
    • 2012
  • Ga-doped ZnO (GZO) was a limit of application on the photovoltaic devices such as CIGS, CdTe and DSSC requiring high process temperature, because it's electrical resistivity is unstable above 300 ℃ at atmosphere. Therefore, ZTO (zinc tin oxide) was introduced in order to improve permeability and thermal stability of GZO film. The resistivity of GZO (300 nm) single layer increased remarkably from 1.8 × 10-3Ωcm to 5.5 × 10-1Ωcm, when GZO was post-annealed at 400 ℃ in air atmosphere. In the case of the ZTO (150 nm)/GZO (150 nm) double layer, resistivity showed relatively small change from 3.1 × 10-3Ωcm (RT) to 1.2 × 10-2Ωcm (400 ℃), which showed good agreement with change of carrier density. This result means that ZTO upper layer act as a barrier for oxygen at high temperature. Also ZTO (150 nm)/GZO (150 nm) double layer showed lower WVTR compared to GZO (300 nm) single layer. Because ZTO has lower WVTR compared to GZO, ZTO thin film acts as a barrier by preventing oxygen and water molecules to penetrate on top of GZO thin film.

Organic-Inorganic Hybrid Thin Film Fabrication as Encapsulation using TMA and Adipoyl Chloride

  • Kim, Se-Jun;Han, Gyu-Seok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.395-395
    • /
    • 2012
  • We fabricate organic-inorganic hybrid thin film for the purpose of encapsulation by molecular layer deposition (MLD) using Trimethylaluminium (TMA) and Adipoyl Chloride (AC). Ellipsometry was employed to verify self limiting reaction of ALD. Linear relationship between number of cycle and thickness was obtained. We found that desirable organic thin film fabrication is possible by MLD surface reaction in nanoscale. Purging was carried out after dosing of each precursor to form monolayer in each sequence. We also confirmed roughness of the organic thin film by atomic force microscopy. We deposit TMA and AC at $70^{\circ}C$ and that 1.78A root mean square was obtained which indicates that uniform organic thin film was formed. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates superlattice film can be possibly use as encapsulation in flexible devices.

  • PDF

A study on micro punching process of ceramic green sheet (세라믹 그린시트의 미세 비아홀 펀칭 공정 연구)

  • 신승용;주병윤;임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.101-106
    • /
    • 2003
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole quality is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene Terephthalate) one. In this paper we found the correlation between hole quality and process condition such as ceramic thickness, and tool size. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

  • PDF

Functional Layer-by-Layer Assembled Multilayers Based on Nucleophilic Substitution reaction

  • Jo, Jin-Han
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.9.2-9.2
    • /
    • 2011
  • Ultrathin polyelectrolyte (PE) multilayer films prepared by the versatile layer-by layer (LbL) assembly method have been utilized for the preparation of light-emitting diodes, electrochromic, membrane, and drug delivery system, as well as for selective area patterning and particle surface modification because the various materials with specific properties can be inserted into the film with nano-level thickness irrespective of the size or the shape of substrate. Since the introduction of the LbL technique in 1991 by Decher and Hong, various hydrophilic materials can be inserted within LbL films through complementary interactions (i.e., electrostatic, hydrogen-bonding or covalent interaction). In this study, it is demonstrated that LbL SA multilayer films based on nucleophilic substitution reaction can allow the preparation of the highly efficient magnetic and/or optical films and nonvolatile memory devices.

  • PDF

A Study on the Office Management Service Platform based on M2M/IoT (M2M/IoT 기반의 사무실 관리 서비스 플랫폼 연구)

  • Nam, Kang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1405-1414
    • /
    • 2014
  • The office management service platform configured with office's sensor devices, G/DSCL(Gateway/Device Service Capability Layer), NSCL(Network Service Capability Layer), and NA(Network Application). In this paper, we designed gateway resource tree and service scenario to fit the office management service and demonstrated appropriate operation of the office management service through intelligent functional modeling.

Thickness Effect of Double Layered Sheet on Burr Formation during Micro-Via Hole Punching Process (미세 비아홀 펀칭 공정 중 이종 재료 두께에 따른 버 생성)

  • 신승용;임성한;주병윤;오수익
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2004
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole qualify is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene terephthalate) one. In this paper we found the correlation between hole quality and process condition such as PET thickness and ceramic thickness. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.