• Title/Summary/Keyword: Fume

Search Result 794, Processing Time 0.024 seconds

Effects of Polyurethane Coatings on 304 Stainless Steel Formed by Thermoset for Safety Management of Industrial Disaster (산업 재해의 안전관리를 위한 열경화에 의한 304 스테인레스 스틸에 대한 폴리우레탄 도료의 영향)

  • Kim, Ki-Jun;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.317-322
    • /
    • 2012
  • The microstructures were examined by SEM, FT-IR spectra, tensible properties mole % of [NCO/OH], and particle size analyzer. Growing concerns in the environment-friendly industries have led to the development of solvent-free formulations that can be cured. We had synthesized the polyurethane resin having the ability to protect stainless steel against corrosion. Compared with general packing materials and coatings, this resin is highly stronger in intensity and longer durability. Polyurethane resins were composed of polyols, IPDI, silicone surfactant, catalyst and crosslink agent. Moreover, thermal fillers such as $Al_2O_3$, fume silica and $ZrO_2$ not only accelerated the curing rate but also improved the physical property as thermal barriers. The rigid segments of polyurethane in mechanical properties were due to crosslink agent and the increase of [NCO/OH]. In conclusion, the polyurethane microstructure with crosslink agent can be good material for themoset coating of metal substrates such as stainless steel.

Applications of Artificial Neural Networks for Using High Performance Concrete (고성능 콘크리트의 활용을 위한 신경망의 적용)

  • Yang, Seung-Il;Yoon, Young-Soo;Lee, Seung-Hoon;Kim, Gyu-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.119-129
    • /
    • 2003
  • Concrete and steel are essential structural materials in the construction. But, concrete, different from steel, consists of many materials and is affected by many factors such as properties of materials, site environmental situations, and skill of constructors. Concrete have two kinds of properties, immediately knowing properties such as slump, air contents and time dependent one like strength. Therefore, concrete mixes depend on experiences of experts. However, at point of time using High Performance Concrete, new method is wanted because of more ingredients like mineral and chemical admixtures and lack of data. Artificial Neural Networks(ANN) are a mimic models of human brain to solve a complex nonlinear problem. They are powerful pattern recognizers and classifiers, also their computing abilities have been proven in the fields of prediction, estimation and pattern recognition. Here, among them, the back propagation network and radial basis function network ate used. Compositions of high-performance concrete mixes are eight components(water, cement, fine aggregate, coarse aggregate, fly ash, silica fume, superplasticizer and air-entrainer). Compressive strength, slump, and air contents are measured. The results show that neural networks are proper tools to minimize the uncertainties of the design of concrete mixtures.

Resistance of Cementitious Binders against a Fall in the pH at Corrosion Initiation

  • Song, Ha-Won;Jung, Min-Sun;Ann, Ki Yong;Lee, Chang-Hong
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.110-115
    • /
    • 2009
  • At the onset of corrosion of steel in concrete, hydrogen ions usually evolve in the process of electrochemical reaction, thereby decreasing the pH of the pore solution, which can be buffered by cement hydration products, as being representatively illustrated by calcium hydroxide. Hence, a fall in the pH is dependent on properties of cement hydration (i.e. hydration products and degree of hydration). The present study tested acid neutralization capacity (ANC) of cementitious binders of OPC(Ordinary Portland Cement), 30% PFA(Pulverized Fuel Ash), 60% GGBS(Ground Granulated Blast Furnace Slag), 10% SF(Silica Fume) to quantify the resistance of cement matrix to a pH fall. Cement pastes were cast at 0.4 of a free W/C ratio with 1.5% chlorides by weight of binder in cast. Powder samples obtained crushed and ground specimen after 200 days of curing were diluted in still water combined with different levels of 1M nitric acid solution, ranging from 0.5 to 20 mol/kg. Then, the pH of diluted solution was monitored until any further change in the pH did not take place. It was seen that the pH of the diluted solution gradually decreased as the molar amount of nitric acid increased. At some particular values of the pH, however, a decrease in the pH was marginal, which can be expressed in the peak resistances to a pH fall in the ANC curve. The peaks occurred at the variations in the pH, depending on binder type, but commonly at about 12.5 in the pH, indicate a resistance of precipitated calcium hydroxide. The measurement of water soluble chloride at the end of test showed that the amount of free chloride was significantly increased at the pH corresponding to the peaks in the ANC curve, which may reflect the adsorption of hydration products to chlorides.

Compressive and Tensile Strength Properties of Slurry Infiltrated Fiber Concrete (슬러리 충전 강섬유 보강 콘크리트의 압축 및 인장강도 특성)

  • Kim, Suk-Ki;Choi, Jin-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.703-708
    • /
    • 2006
  • The slurry infiltrated fiber concrete(SIFCON) is recognized as one of the most promising new construction materials. Compressive and direct tensile tests are performed to investigate the mechanical property of SIFCON. Hooked-end steel fibers are used in the mix with fiber volume fraction varied from 4% to 10%. The water/cement ratio is kept constant at 0.4. The amount of silica fume added is 10% by weight of cement and 0.5% of water reducing agent is added to improve the workability of the slurry. The test results in this study show that the compressive strength of SIFCON is about 1.59 to 2.68 times in comparison with the cement paste. Tensile strength is showed the enhancement of about 2.51 to 8.77 times. It is also observed that the toughness and ductility of SIFCON are increased significantly with the increasing in fiber volume fraction.

The Characteristics of Strength Development on Concrete with Low Heat Cement and High Volume Fly-Ash (저열 시멘트 HVFAC 강도 발현 특성)

  • Park, Chan-Kyu;Lee, Seung-Hoon;Kim, Han-Jun;Kim, Sang-Jun;Lee, Tae-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.637-640
    • /
    • 2008
  • In this study, the characteristics of strength development on high volume fly ash concrete(HVFAC)with Type 4 cement was experimentally investigated. Three levels of W/B were selected. Four levels of fly ash replacement ratios and two levels of silica fume replacement ratios were adopted. In the concrete mix, the water content of 125kg/m$^3$ was used, which is less than that of usual water content. As a result, it appeared that the compressive strength gradually decreased with increasing fly ash replacement ratio until 91days. However, regarding the compressive strength, the proper replacement ratio is about 20%, which is low compared to Type I cement case. It was observed that the tensile strength is proportional to the 0.72 power of the compressive strength. It appears that the prediction equation presented in Concrete Standard Specification overestimate the tensile strength in the low strength range, underestimate the tensile strength in the hi호 strength range.

  • PDF

Evaluation on the Sulfate Attack Resistance of Cement Mortars with Different Exposure Conditions (노출조건에 따른 시멘트 모르타르의 황산염침식 저항성 평가)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.427-435
    • /
    • 2012
  • In order to evaluate the effects of exposure conditions on the resistance to sulfate attack of normal and blended cement mortars, several mechanical characteristics of the mortars such as expansion, strength and bulk density were regularly monitored for 52 cycles under sodium sulfate attack. The mortar specimens were exposed to 3 different types of exposure conditions; 1) continuous full immersion(Exposure A), continuous half-immersion(Exposure B) and cyclic wetting-drying(Exposure C). Experimental results indicated that the maximum deterioration was noted in OPC mortar specimens subjected to Exposure B, showing the wide cracks in the portions where attacking solution is adjacent to air. Additionally, the beneficial effect of ground granulated blast-furnace slag and silica fume was clearly observed showing a superior resistance against sodium sulfate attack, because of its lower permeability and densified structure. Thus, it is suggested that when concrete made with normal cement is exposed to sulfate environment, proper considerations on the exposure conditions should be taken.

Identification of Alkali Reactivity of Natural Aggregates by Application of a Rapid Method (촉진시험법을 이용한 하천골재의 알칼리 반응성 판정)

  • Yang, Dong-Yoon;Lee, Chang-Bum
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.175-183
    • /
    • 1997
  • The concrete structure can be easily damaged due to alkali-aggregates reaction. There are several methods to identify alkali reactivity of aggregates. The most reliable method is mortar-bar test, but it takes 3 to 12 months for whole test. The authors applied "rapid method" which takes only 7 days for this test. The result of this rapid method follows; expansion ratio of mortar bar for natural aggregates taken at the Youngsan River ranges from 0.197 to 0.489%, but that from Changseong Lake has low expansion ratio of 0.147%, which is below the limit of allowance, 0.168%. Those from the Seomjin River range from 0.173 to 0.22%, and those from the Keum River range from 0.078% to 0.111%. In the case of higher expansion ratio than 0.168%, aggregates must be used with cement containing low alkali content or adding material consuming the alkali content of cement, for example, fly ash and silica fume, etc.. Most of natural aggregates in Cheolla area have no problem in physical properties, particularly the abrasion ratio is below 40%, the limit of allowance. The natural aggregate from Cheolla area consists mostly of gneiss, granite and volcanic rocks. The major alkali reactive materials are quartz mineral with undulatory extinction in gneiss and granite, and amorphous silica in volcanic rocks. Even if a certain aggregate consists of the same kind of rocks and has similar rock composition each other, content of alkali reactivity material can be various, because rock formation is locally different according to temperature and pressure. Therefore every rock type must be physically and chemically identified before using for aggregates.

  • PDF

Analysis of Rheological Properties of Cement Paste with Binder Type and Composition Ratio (결합재 타입 및 구성비 변화에 따른 시멘트 페이스트의 레올로지 특성 분석)

  • Jeon, Sung IL;Nam, Jeong Hee;Lee, Moon Sup;Nho, Jae Myun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.77-88
    • /
    • 2017
  • PURPOSES : It is necessary to clarify the rheological properties of cement paste as a basic research in the development of mechanistic concrete mix design. The rheological properties of cement paste with different binder types, mix propositions, and with/without high range water reducers have been analyzed. METHODS : In this study, ordinary Portland cement, fly-ash, blast furnace slag, silica fume, and limestone powder were used as binders. The range of water-binder ratio was 0.3-0.5, and a total of 30 different mixes have been tested. The slump flow test, V-funnel test, and Dynamic Shear Rheometer (DSR) test were performed to analyze the rheological properties of cement paste. RESULTS : As a result of the slump flow test, it was found that the composition ratio of the binder contents greatly affected the paste flow when the high range water reducers were added. The results of V-funnel test showed that when the water-binder ratio was decreased without high range water reducers, the binder composition ratio had a large effect on the passing time of the V-funnel tester, but with high range water reducers the impact of the binder composition ratio was decreased. The slump flow and V-funnel have a certain relationship with the rheological factors (yield stress and plastic viscosity), but the correlation was not significant. Finally, we proposed the M-value considering the density and specific surface area of the binder. The correlation between rheological factors and M-value were better demonstrated than experimental values, but there is still a limit to predict the rheological factor in general mix design. CONCLUSIONS :In this study, the rheological properties of cement paste were analyzed. The binder type, composition ratio of binder, and with/without high range water reducers have combined to provide the complex effects on the rheological properties of cement paste. The correlation between the proposed M-value and rheological factor was found to be better than experimental results, but needs to be improved in the future.

Development of Process for High Deposited Metal Melting Efficiency in TIG Welding Using Filler Wire (필러와이어를 쓰는 TIG용접에서 용착금속의 높은 용융효율을 얻기 위한 공정개발)

  • Shin, Hee-Seop;Ham, Hyo-Sik;Seo, Ji-Seuk;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.41-41
    • /
    • 2010
  • 에어컨용 냉매 압축기, 냉장고용 냉매압축기 및 자동차 샷시 부품들은 주로 겹치기 필릿용접을 GMAW 으로 실시하고 있다. 그러나 용접 시 스패터 발생으로 인한 추가공수가 요구되며 작업환경 또한 열악한 실정이다. 따라서 저가의 고생산이면서 용접비드의 외관이 미려하고 스패터, 소음 그리고 Fume 이 발생되지 않는 청정한 TIG 용접이 있지만, 용접속도가 수십 cpm 이하로 제한되어 생산성이 낮다는 기술적 모순을 가지고 있다. TIG 용접에서 생산성을 증가시키기 위해 모재와 와이어를 고속 용융 시키려면 전류를 높여 입열량을 증가시켜야 하지만, 증가된 전류로 인하여 상승된 아크력이 험핑비드와 언더컷이 발생되는 물리적 모순을 가진다. 또한 필러와이어를 사용한 기존의 TIG 용접에서 필러 와이어는 주로 원형 단면 와이어를 사용하게 되는데 와이어의 직경이 증가함에 따라 비표면적은 감소하여 용융효율이 낮아지므로 $\Phi$1.2 이하의 필러와이어를 송급하여 용접하였다. 그러나 요구되는 용착량이 큰 경우 필러 와이어를 고속으로 송급하게 되는데 이 경우 필러 와이어 용융이 곤란하거나 송급상의 문제가 자주 생겨 용접속도를 고속으로 하기 곤란하였다. 따라서 필러와이어를 사용한 TIG 용접에서 용착금속의 용융효율을 높게 함으로서 전류를 크게 증가시키지 않으면서도 용접속도를 높일 수 있는 용접 공정개발이 필요한 실정이다. 본 연구에서는 비표면적을 증가시켜 용착금속의 높은 용융효율을 얻을 수 있도록 개발된 와이어와 기존의 $\Phi$3.2 일반와이어 및 를 이용하여 BOP TIG 용접에 비교 실험하였으며, 개발된 와이어와 기존의 $\Phi$1.2 필러와이어를 이용하여 필릿용접부에 적용 실험하여 비교하였다. 그 결과 개발된 와이어의 경우 적절한 비드를 형성하였으나 3.2 일반와이어의 경우 과도한 볼록비드와 불용착부의 문제가 발생하였고, 필릿용접 비교실험에서는 각각 200cpm과 50cpm에서 적절한 비드가 형성되어 더 높은 용착금속 용융효율을 얻을 수 있었다.

  • PDF

A Study on the Properties of High Performance Concrete Using CSA Expansive Additives and Inorganic Admixtures (CSA계 팽창재 및 무기질 혼화재를 이용한 고성능 콘크리트의 특성에 관한 연구)

  • Han, Cheon-Goo;Bahn, Ho-Yong;Jun, Byung-Chea;Hong, Sang-Hee
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.141-148
    • /
    • 1999
  • Recently, high performance concrete developed has a good quality at fresh and hardened state, but high binder contents results in spending much money on manufacturing and many cracks by drying and autogenous shrinkage, Therefore, in this paper, not only prevention of cracks caused by drying and autogenous shrinkage, but improvement of quality and accomplishment of economy by applying F.A(fly ash), S.F(silica fume) and CSA(calcium sulfa aluminate) expansive additives as an inorganic admixtures in W/B 35% are discussed. According to the experimental results, when 5% of CSA expansive additives and 15:5(F.A:S.F)are replaced at unit cement content, high performance concrete with both good fluidity at fresh state and high compressive strength, compensation of drying and autogenous shrinkage at hardened state are accomplished.