• Title/Summary/Keyword: Fume

Search Result 794, Processing Time 0.03 seconds

Improvement of Physical Property of Autoclaved Light-Weight Concrete Using Admixtures and Chemical Reactants (혼화재 및 화학반응제를 혼입한 경량기포콘크리트의 물성 개선)

  • Song, Hun
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.4
    • /
    • pp.87-95
    • /
    • 2012
  • Autoclaved lightweight concrete (ALC), also known as autoclaved aerated concrete (AAC), is a lightweight, precast building material that simultaneously provides structure, insulation. ALC is a unique building material. Because of its cellular nature, it is lightweight, self-insulating, as well as sound and fireproof. ALC products include blocks, wall panels, floor and roof panels, and lintels. Recently, the use of ALC has became increasingly popular. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures and chemical reactants. Admixtures make use of meta kaolin and silica fume, chemical reactants make use of sodium silicate and sodium hydroxide. From the test result, the ALC using admixtures and chemical reactants have a good fundamental properties compared with plain ALC. These good fundamental properties is caused by the admixtures and chemical reactants of ALC by the reason of the micro filling effect and chemical binding of C-S-H gel, tobermolite and quartz.

Applications and Analysis of Exterior Paints for the Curtain Wall Panel System based on the Autoclaved Lightweight Concrete(ALC) (경량기포콘크리트(ALC) 패널을 건축물 외장 커튼월에 적용을 위한 도료의 기초적 연구)

  • Lee, Yong-Soo;La, Hyun-Ju
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.3
    • /
    • pp.59-66
    • /
    • 2012
  • Autoclaved Lightweight Concrete(ALC) features such as a high performance insulation, the fire resistance, the advantage of easy handing construction, and lightweight panels applied the curtain wall system. ALC materials are certified as non-toxic environmental and eco-friendly productions. But ALC external panels mixed with blast furnace slag pounder and silica fume have to be coated with a stucco compound or plaster because of resisting the ambient environment. This study is that mixing tests to evaluate a performance analysis of exterior paints to be make-up pigments(organic or inorganic) coated with panel surface. Testing compared by KS F 2476; flow test, KS F 2426; compression strength test, KS F 2762; bond strength test. In results, the case of the inorganic binder, ratio of alumina cement : anhydrite is 90:10 to 80:20 at the highest level of intensity. In the case of the organic binder, adhesive strength rating at surface of ALC, the pullout strength is below 0.5 $N/mm^2$ but the normal concrete is over 2.0$N/mm^2$. A contents ratio of EVA resin is more than 3% and then bond strength is effectively.

Modeling shotcrete mix design using artificial neural network

  • Muhammad, Khan;Mohammad, Noor;Rehman, Fazal
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.167-181
    • /
    • 2015
  • "Mortar or concrete pneumatically projected at high velocity onto a surface" is called Shotcrete. Models that predict shotcrete design parameters (e.g. compressive strength, slump etc) from any mixing proportions of admixtures could save considerable experimentation time consumed during trial and error based procedures. Artificial Neural Network (ANN) has been widely used for similar purposes; however, such models have been rarely applied on shotcrete design. In this study 19 samples of shotcrete test panels with varying quantities of water, steel fibers and silica fume were used to determine their slump, cost and compressive strength at different ages. A number of 3-layer Back propagation Neural Network (BPNN) models of different network architectures were used to train the network using 15 samples, while 4 samples were randomly chosen to validate the model. The predicted compressive strength from linear regression lacked accuracy with $R^2$ value of 0.36. Whereas, outputs from 3-5-3 ANN architecture gave higher correlations of $R^2$ = 0.99, 0.95 and 0.98 for compressive strength, cost and slump parameters of the training data and corresponding $R^2$ values of 0.99, 0.99 and 0.90 for the validation dataset. Sensitivity analysis of output variables using ANN can unfold the nonlinear cause and effect relationship for otherwise obscure ANN model.

An Experimental Study on Shear Behaviour of Reinforced High Strength Concrete Beams (고강도 철근콘크리트 보의 전단거동에 관한 실험적 연구)

  • 곽계환;고갑수;곽경헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.58-69
    • /
    • 1996
  • In recent years, the research and development about the new material proceeds rapidly and actively. In building industry, high strength concrete is of interest as a new material. Since the building structure becomes bigger, higher and more specialized, the demand of material and member with high strength expands greatly. Therefore in this experiment, cement complex with high strength was made using the condensed silica fume, a basic experiment was performed on strength property, and optimum-mixture-state was determined for manufacturing a high-strength concrete. Shear behaviour and fracture property of concrete beams with high strength were evaluated. On the whole, in spite of many researches, it is one of the difficult problems that shear fracture of concrete beams has not yet been clearly understood theoretically, and now the shear-design-standard forms in many countries are a formula based on experiment. In this study, the variable of shear behavior experiment was shear-reinforcement-ratio. By analyzing test results and comparing with computation value by ACI code, the basic data was offered on shear design of reinforced concrete beams with high strength. The effect of epoxy repair was also investigated for the beams with cracks due to flexural and shear loading.

  • PDF

Evaluation of cement mortars blended with copper alloy slag (구리 합금 슬래그를 혼합한 시멘트 모르타르의 특성)

  • Lee, Jung-Il;Hong, Chang Woo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.39-43
    • /
    • 2015
  • The cement mixtures such as flyash, iron-slag and silica fume have been actively studied in order to increase the quality of concrete. In this study, the grinded copper-slag with different proportion was added to portland cement. The physical properties of the cement mortars, (i.e.) flowability, absorption, compressive strength and flexural strength, were investigated for the potential application to the cement. Also, the influence of the acid on the chemical resistance of the cement mortars with copper-slag was evaluated by monitoring the weight variation of the cement mortars under 5 % sulfuric acid for 28 days.

Strength Characteristics on High Strength Concrete against Sulfate Attack (황산염의 침해를 받는 고강도 콘크리트의 강도특성과 물성변화)

  • Park, Young-Shik;Suh, Jin-Kook;Lee, Jae-Hoon;Shin, Young-Shik
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.117-128
    • /
    • 1998
  • 화학적으로 유해한 환경에 놓인 콘크리트 구조물은 필연적으로 그 기능이 악화되므로 혼화재를 포함한 고강도 콘크리트 또는 혼화재 그 자체가 화학물질에 오염된 환경하에서 어떤 변화를 일으키는가에 대한 연구의 필요성이 점점 증대되고 있다. 따라서 본 논문에서는 건설현장에서 가장 흔히 사용되는 보통강도 콘크리트와 실리카-흄을 포함한 포틀랜드시멘트 경화체인 고강도 콘크리트가 황산염의 침해를 받는 경우에 일어나는 강도특성과 물성변화를 조사하기 위하여 담수와 함께 황산나트륨, 황산마근네슘, 황산나트륨과 황산마그네슘의 혼합용액 등 여러종류의 황산염 용액에 실리카-흄을 사용한 고강도 콘크리트, 낮은 물-시멘트 비의 고강도 콘크리트, 보통강도의 콘크리트 등의 시험체들을 270일간 침지시켜 침지시간에 따른 압축강도 변화와 실리카-흄의 첨가량에 따른 압축강도 변화, 그리고 실리카-흄의 첨가량에 따른 선형팽창량 및 중량변화등에 관한 실험을 수행하였다. 이에 대한 실험결과를 토대로 실리카-흄을 사용한 고강도 콘크리트에 황산염이 미치는 영향을 분석하여 고강도 콘크리트의 실용성을 극대화하기 위한 방안에 대하여 고찰해보았다. 그 결과 실리카-흄을 포함한 고강도 콘크리트는 황산나트륨의 침해에 대해서는 강한 저항성을 나타내지만 황산마그네슘에 대해서는 심각한 침해를 일으키는 것으로 나타났으므로 황산마그네슘에 노출될 우려가 있는 콘크리트 구조물에 고강도를 발현하기 위하여 실리카-흄을 사용하는 것은 구조적으로 큰 문제가 발생할 것으로 사료된다.

An Experimental Study on the Engineering Properties of Ultra-High Strength Concrete according to Types of Mineral Admixtures (광물질 혼화재 종류에 따른 초고강도 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Joung Hyun-Woong;Kang Hoon;Lee Sang-Soo;Song Ha-Young;Kim Eul-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.29-32
    • /
    • 2005
  • In this study, the experiment was carried out to investigate and analyze the strenth properties and flowability of ultra-high strength concrete accroding to types of mineral admixtures. The main experimental variables were water/binder ratio 25.0, 27.5 and 30.0$\%$, water content 155, 160, 165, and 170kg/$m^{3}$ and mineral admixtures such as fly ash, silica fume and meta kaolin. According to the test results, the principle conclusions are summarized as follows. 1) In case of using admixtures, superplasticizer amount need more than plain concrete. 2) According to kinds of admixtures, the viscosity of concrete show much difference. 3) The compressive strength of concrete that use admixtures becomes low in early-age strength, but appeared by higher than plain concrete in long-term strength. 4) Meta kaolin is excellent in side but has viscosity enlargement efficiency a little. But, problem estimates that is not to make design strength 600 and 700kgf/$cm^{2}$ if use mixing condition with water-binder ratio properly.

  • PDF

Bridge Deck Overlay Technology Using High Performance Concrete (고성능 콘크리트를 활용한 교량 교면포장 기술)

  • Park, Hae-Geun;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1113-1116
    • /
    • 2008
  • The application of High Performance Concrete (HPC) for protecting bridge deck concrete with micro-silica, fly-ash and ground granulated blast-furnace slag was introduced to North America in the early 1980's. This report introduces the literature reviews of high performance concrete for protecting concrete bridge deck and explains 2-different types of construction methods using this materials. One is high performance concrete overlay method and the other is full depth bridge deck method. Both methods have been successfully applied and demonstrated in north america. Especially, modified high performance concrete overlay method including silica-fume and PVA fiber has been successfully applied in korea also. Therefore, both methods that high performance concrete overlay and full depth bridge deck are considered as reasonable bridge deck protecting methods compared with the conventional bridge deck system using asphalt modified materials.

  • PDF

Concrete properties prediction based on database

  • Chen, Bin;Mao, Qian;Gao, Jingquan;Hu, Zhaoyuan
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.343-356
    • /
    • 2015
  • 1078 sets of mixtures in total that include fly ash, slag, and/or silica fume have been collected for prediction on concrete properties. A new database platform (Compos) has been developed, by which the stepwise multiple linear regression (SMLR) and BP artificial neural networks (BP ANNs) programs have been applied respectively to identify correlations between the concrete properties (strength, workability, and durability) and the dosage and/or quality of raw materials'. The results showed obvious nonlinear relations so that forecasting by using nonlinear method has clearly higher accuracy than using linear method. The forecasting accuracy rises along with the increasing of age and the prediction on cubic compressive strength have the best results, because the minimum average relative error (MARE) for 60-day cubic compressive strength was less than 8%. The precision for forecasting of concrete workability takes the second place in which the MARE is less than 15%. Forecasting on concrete durability has the lowest accuracy as its MARE has even reached 30%. These conclusions have been certified in a ready-mixed concrete plant that the synthesized MARE of 7-day/28-day strength and initial slump is less than 8%. The parameters of BP ANNs and its conformation have been discussed as well in this study.

Predictive modeling of concrete compressive strength based on cement strength class

  • Papadakis, V.G.;Demis, S.
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.587-602
    • /
    • 2013
  • In the current study, a method for concrete compressive strength prediction (based on cement strength class), incorporated in a software package developed by the authors for the estimation of concrete service life under harmful environments, is presented and validated. Prediction of concrete compressive strength, prior to real experimentation, can be a very useful tool for a first mix screening. Given the fact that lower limitations in strength have been set in standards, to attain a minimum of service life, a strength approach is a necessity. Furthermore, considering the number of theoretical attempts on strength predictions so far, it can be seen that although they lack widespread accepted validity, certain empirical expressions are still widely used. The method elaborated in this study, it offers a simple and accurate, compressive strength estimation, in very good agreement with experimental results. A modified version of the Feret's formula is used, since it contains only one adjustable parameter, predicted by knowing the cement strength class. The approach presented in this study can be applied on any cement type, including active additions (fly ash, silica fume) and age.