• 제목/요약/키워드: Fume

검색결과 793건 처리시간 0.021초

Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete

  • Hakeem, Ibrahim Y.;Amin, Mohamed;Abdelsalam, Bassam Abdelsalam;Tayeh, Bassam A.;Althoey, Fadi;Agwa, Ibrahim Saad
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.295-312
    • /
    • 2022
  • This study investigates the effects of nano silica (NS) and micro steel fiber on the properties of ultra-high-performance concrete (UHPC). The experimental consists of three groups, each one with five percentages of NS content (0%, 2%, 4%, 6% and 8%) in addition to the 20% silica fume and 20% quartz powder proportioned according to the weight of cement added to the mixtures. In addition, three percentages of micro steel fibers (0%, 1% and 2%) were considered. Different mixtures with varying percentages of NS and micro steel fibers were prepared to set the water-to-binder ratio, such as 0.16% and 1.8% superplasticizer proportioned according the weight of the binder materials. The fresh properties, mechanical properties and elevated temperatures of the mixtures were calculated. Then, the results from the microstructure analyses were compared with that of the reference mixtureand it was found that 6% replacement of cement with NS was optimum replacement level. When the NS content was increased from 0% to 6%, the air content and permeability of the mixture decreased by 35% and 39%, the compressive and tensile strength improved by 21% and 18% and the flexural strength and modulus of elasticity increased by 20% and 11.5%, respectively. However, the effect of micro steel fibres on the compressive strength was inconclusive. The overall results indicate that micro steel fibres have the potential to improve the tensile strength, flexure strength and modulus of elasticity of the UHPC. The use of 6% NS together with 1% micro-steel fiber increased the concrete strength and reduce the cost of concrete mix.

고성능 저발열 자기충전 콘크리트의 최적 배합설계 (Optimal Mix Design of High-Performance, Low-Heat Self-Compacting Concrete)

  • 김영봉;이준해;박동천
    • 한국건축시공학회지
    • /
    • 제22권4호
    • /
    • pp.337-345
    • /
    • 2022
  • 해안지역 초고층 콘크리트 건축물 매트기초는 상하층 응력발생으로 인한 결함예방과 원활한 공정관리를 위해 일반적으로 일체타설이 요구되지만 일체타설의 경우 수화열에 의한 온도응력 균열 발생의 우려가 있으며 다짐에 대한 시공성을 확보하기 위해 높은 수준의 자기충전성의 콘크리트 배합이 필요하다. 본 연구에서는 이러한 요구성능을 만족할 수 있도록 고성능 분사제와 혼화재의 사용량을 실험변수로 배합 실험을 통해 최적량을 도출하고자 하였다. 배합 변수별 결과분석을 통해 단위수량은 155kg/m3, 결합재에서 시멘트 비율 18% 일 때 굳지 않은 콘크리트 물성 및 강도발현 목표값을 만족하는 것으로 나타났다. 4성분계(시멘트 18%, 슬래그미분말 50%, 플라이애시 27%, 실리카흄 5%)가 사용되었다.

상부 슬래브와 합성된 원심성형으로 제작된 초고강도 각형보의 실험연구 (The Experimental Study of Full-scale Centrifugal Formed High Strength Concrete Prismatic Beam(CFPB) Composited with Deck Slab )

  • 이두성;김성진;김정회
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권1호
    • /
    • pp.19-29
    • /
    • 2023
  • 실리카 흄과 같은 고가의 혼화재 투입 없이 원심성형 공정 활용으로 콘크리트의 수밀성 증대 통한 콘크리트 압축강도 100 MPa급 초고강도 프리스트레스 각형보를 개발하였다. 벽체에 가설된 초고강도 원심성형 각형보는 상부슬래브 콘크리트와 합성된 후에 공용하중을 받게 되는데, 원심성형 보와 바닥판 사이에는 휨에 의해 수평전단응력이 발생되고 이는 스터드나 철근 등의 전단연결재를 통해서 보와 바닥판이 합성거동을 하게 된다. 본 연구에서는 공장에서 생산된 100 MPa급 원심성형 각형보 상부에 RC슬래브를 제작하여 합성시킨 실물모형 시험체에 대한 휨재하시험을 수행하였으며, 합성단면은 설계 공칭휨강도를 넘어 안정적인 합성거동을 하면서 파괴되어 구조적인 신뢰성을 입증하였다.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

화학사고 빈도가 높은 산 계열 물질의 취급 특성 연구 (A Study on the Characteristics of Production and Using for Acidic Chemicals with High Accident Frequency)

  • 김기준;이진선;윤영삼;정미숙;윤준헌;석광설
    • 한국위험물학회지
    • /
    • 제2권1호
    • /
    • pp.1-5
    • /
    • 2014
  • Acidic chemicals like sulfuric acid, nitric acid and hydrogen chloride take up 37% of the total chemical accidents which took place for the past 10 years. When an acidic chemical leak happens, fume is generated, diffusing into the air, which might cause serious damage to health of local residents and the environment. However, we have only little reference data for production and using of acidic chemicals. In this study, we investigated characteristics of production and using for acidic chemicals with high accident frequency. As a results, domestic chemical accidents were categorized according to chemical types and production, using, and handling characteristics of acidic chemicals were identified. Sulfuric acid was handled in the largest amount, followed in the order of hydrogen chloride, nitric acid, acrylic acid, and hydrogen fluoride. Sulfuric acid is used in the industry of manufacturing composite fertilizer and mainly used for manufacturing fertilizer. Hydrogen chloride is used in the industry of manufacturing basic chemicals for petrochemical family and mainly used for pH regulator. It is expected that this results could be used as preliminary data for making decisions on facilities required intensive management in order to prevent chemical accidents and prepare countermeasures against such accidents.

무기산 누출 사고 대응을 위한 탐지·분석 방법 연구 (Study on the Methods of Detection and Analysis for Responding Inorganic Acids Spill)

  • 이진선;정미숙;김기준;안성용;윤영삼;윤준헌
    • 한국위험물학회지
    • /
    • 제2권1호
    • /
    • pp.6-11
    • /
    • 2014
  • There have been frequent chemical leaks over the past 10 years. Particularly, inorganic acids like sulfuric acid, nitric acid, and hydrogen chloride take up 37 % of the total chemical accidents which took place for the past 10 years. When an acid chemical leak happens, fume is generated, diffusing into the air, which might cause serious damage to health of local residents and the environment. However, most of the acid-based chemicals, detecting and analysis methods have not been settled considering the frequency of accidents. In this study, we investigated detection and analysis methods to quickly analyze accident sites and evaluate the impacts on environments. Reviewing local and international test analysis methods of acids suggested that nitric acid, sulfuric acid, hydrogen chloride and hydrogen fluoride can be analyzed with IC. It was also found that UV is better for the analysis of hydrogen fluoride and GC/MS for acrylic acid. The analytical methods suggested in the official test methods basically have limitations of consuming much time at stages of preparation and analysis. Considering prompt responses to chemical accidents, further studies should be done to compare the applicability of rapid monitoring methods such as FT-IR, IMR-MS and SIFT-MS.

Association with Combined Occupational Hazards Exposure and Risk of Metabolic Syndrome: A Workers' Health Examination Cohort 2012-2021

  • Dongmug Kang ;Eun-Soo Lee ;Tae-Kyoung Kim;Yoon-Ji Kim ;Seungho Lee ;Woojoo Lee ;Hyunman Sim ;Se-Yeong Kim
    • Safety and Health at Work
    • /
    • 제14권3호
    • /
    • pp.279-286
    • /
    • 2023
  • Background: This study aimed to evaluate the association between exposure to occupational hazards and the metabolic syndrome. A secondary objective was to analyze the additive and multiplicative effects of exposure to risk factors. Methods: This retrospective cohort was based on 31,615 health examinees at the Pusan National University Yangsan Hospital in Republic of Korea from 2012-2021. Demographic and behavior-related risk factors were treated as confounding factors, whereas three physical factors, 19 organic solvents and aerosols, and 13 metals and dust were considered occupational risk factors. Time-dependent Cox regression analysis was used to calculate hazard ratios. Results: The risk of metabolic syndrome was significantly higher in night shift workers (hazard ratio = 1.45: 95% confidence interval = 1.36-1.54) and workers who were exposed to noise (1.15:1.07-1.24). Exposure to some other risk factors was also significantly associated with a higher risk of metabolic syndrome. They were dimethylformamide, acetonitrile, trichloroethylene, xylene, styrene, toluene, dichloromethane, copper, antimony, lead, copper, iron, welding fume, and manganese. Among the 28 significant pairs, 19 exhibited both positive additive and multiplicative effects. Conclusions: Exposure to single or combined occupational risk factors may increase the risk of developing metabolic syndrome. Working conditions should be monitored and improved to reduce exposure to occupational hazards and prevent the development of the metabolic syndrome.

그래핀과 유공유리분말을 사용한 초고강도 콘크리트의 자기수축에 관한 실험적 연구 (A Comprehensive Examination of Autogenous Shrinkage in Ultra-High-Strength Concrete augmented with Graphene and Hollow Glass Powder)

  • 서태석;이현승;김강민
    • 한국건축시공학회지
    • /
    • 제23권5호
    • /
    • pp.547-558
    • /
    • 2023
  • 초고강도 콘크리트의 강도와 유동성 확보를 위해 실리카흄(SF)를 사용하는 전통적인 방식에서 벗어나 산화 그래핀 나노플레이트릿(Oxidized graphene nanoplatelet, GO)와 유공유리분말( Hollow glass powder, HGP)를 사용한 초고강도 콘크리트를 개발하였고 본 연구에서는 자기수축 특성에 대해 검토하였다. 그 결과 SF를 사용한 Ref 배합보다 SF를 사용하지 않고 cGO(C사의 GO)와 HGP를 사용한 NewMix 배합의 자기수축이 13% 정도 감소하였다. NewMix의 자기수축에 의한 균열발생은 Ref 보다 1일 정도 지연되었고 균열발생 시의 인장응력은 가장 높았다. cGO의 높은 비표면적과 우수한 분산성으로 콘크리트 내의 공극들이 충전 되어 자기수축이 감소하고 cGO에 의한 균열저항 성능이 증가하여 초고강도 콘크리트의 자기수축 균열 제어에 효과가 있을 것으로 판단된다.

The influencing factors for the strength enhancement of composite materials made up of fine high-calcium fly ash

  • Olga M. Sharonova;Leonide A. Solovyov;Alexander G., Anshits
    • Advances in concrete construction
    • /
    • 제16권3호
    • /
    • pp.169-176
    • /
    • 2023
  • The aim of the study was to establish the influence of particle size, chemical and phase composition of fine microspherical high-calcium fly ash (HCFA), as well as superplasticizer content on the strength of cementless composite materials based on 100% HCFA and mixtures of HCFA with Portland cement (PC). For the initial HCFA fractions, the particle size distribution, chemical and quantitative phase composition were determined. The compressive strength of cured composite materials obtained at W/B 0.4 and 0.25 was determined at a curing time of 3-300 days. For cementless materials, it was found that a change in the particle size d90 from 30 ㎛ (fraction 3) to 10 ㎛ (fraction 4) leads to an increase in compressive strength by more than 2 times. Compressive strength increases by at least another 2.2 times with the addition of Melflux 5581F superplasticizer (0.12%) and at W/B 0.25. The HCFA-PC blends were investigated in the range of 60-90% HCFA and the maximum compressive strength was found at 80% HCFA. On the basis of 80% HCFA-20% PC blend, the samples of ultra-high strength (108 and 150 MPa at 28 and 100 days of hardening) were obtained with the addition of 0.3% Melflux 5581F and 5% silica fume. The quantitative phase composition was determined for composite materials with a curing age of 28 days. It has been established that in a sample with ultra-high strength, a more complete transformation of the initial phases of both HCFA and PC occurs as compared to their transformation separately.

Sustainable SCC with high volume recycled concrete aggregates and SCMs for improved mechanical and environmental performances

  • Zhanggen Guo;Ling Zhou;Qiansen Sun;Zhiwei Gao;Qinglong Miao;Haixia Ding
    • Advances in concrete construction
    • /
    • 제16권6호
    • /
    • pp.303-316
    • /
    • 2023
  • Using industrial wastes and construction and demolition (C&D) wastes is potentially advantageous for concrete production in terms of sustainability improvement. In this paper, a sustainable Self-Compacting Concrete (SCC) made with industrial wastes and C&D wastes was proposed by considerably replacing natural counterparts with recycled coarse aggregates (RCAs) and supplementary cementitious materials (SCMs) (i.e., Fly ash (FA), ground granulated blast furnace slag (GGBS) and silica fume (SF)). A total of 12 SCC mixes with various RCAs and different combination SCMs were prepared, which comprise binary, ternary and quaternary mixes. The mechanical properties in terms of compressive strength and static elasticity modulus of recycled aggregates (RA-SCC) mixes were determined and analyzed. Microstructural study was implemented to analyze the reason of improvement on mechanical properties. By means of life cycle assessment (LCA) method, the environmental impacts of RA-SCC with various RCAs and SCMs were quantified, analyzed and compared in the system boundary of "cradle-to-gate". In addition, the comparison of LCA results with respect to mechanical properties was conducted. The results demonstrate that the addition of proposed combination SCMs leads to significant improvement in mechanical properties of quaternary RA-SCC mixes with FA, GGBS and SF. Furthermore, quaternary RA-SCC mixes emit lowest environmental burdens without compromising mechanical properties. Thus, using the combination of FA, GGBS and SF as cement substitution to manufacture RA-SCC significantly improves the sustainability of SCC by minimizing the depletion of cement and non-renewable natural resources.