• Title/Summary/Keyword: Fume

Search Result 793, Processing Time 0.03 seconds

Mechanical Properties of Carbon Fiber Reinforced Porous Concrete for Planting

  • Park Seung-Bum;Kim Jeong-Hwan
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.161-169
    • /
    • 2002
  • The mechanical properties of fiber reinforced porous concrete for use as a planting material were investigated in this study. Changes in physical and mechanical properties, subsequent to the addition of carbon fiber and silica fume, were studied. The effects of recycled aggregate were also evaluated. The applicability as planting work concrete material was also assessed. The results showed that there were no remarkable changes in the void and strength characteristics following the increase in proportion of recycled aggregate. Also, the mixture with 10% silica fume was found to be the most effective for strength enforcement. The highest flexural strength was obtained when the carbon fiber was added with $3\%$. It was also noticed that PAN-derived carbon fiber was superior to Pitch-derived ones in view of strength. The evaluation of its usage for vegetation showed that the growth of plants was directly affected by the existence of covering soil, in case of having the similar size of aggregate and void.

  • PDF

Chloride Transport Rate in Blended Concrete Depending on Different Test Methods

  • Balamurugan, Loganathan;Kim, Sang-Hyo;Ann, Ki-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.477-478
    • /
    • 2010
  • Concretes with binary blends of Portland cement, silica fume, fly ash and ground granulated blast furnace slag were produce to investigate their effects on compressive strength and chloride transport in rapid chloride permeability. Ten different mix of concrete with 0.45 water/binder were produced. Portland cement was replacedby: (i) 10%, 20%, 30% Fly ash (ii) 3%, 5%, 10% Silica Fume (iii) 20%, 40%, 60% GGBS. Compressive strength of concrete with the pozzolans is higher compared to that of the Portland cement concrete. The test results indicate the fly ash, silica fume, and ground granulated furnace slag greatly reduce the rapid chloride permeability of concrete. It was concluded that pozzolans are more effective to reduce chloride permeability of concrete.

  • PDF

An Effect of Harmful Materials During Welding Work (용접 작업 중 발생하는 유해물질의 영향)

  • Lee, Kyung-Man;Lee, Chul-Ku
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • This study is about an influence of harmful factors of welding fumes such as Fe, Mn, Cu, Zn to workers who inhales them in welding sites. The influence can be measured with the density of heavy metals in blood after welding. The main factors of the measurement are TWA, a density of welding fume, and a level of heavy metals. The results indicate that there is a positive effect of moving fans as a way of improving the condition in welding workplaces. While welding was done, TWA exceeded the level of Fe 40% and Zn 10% and the level of heavy metals in blood was below the standard for the workers who were under the experiment. Also when the wind was applied on the front side by a fan, the welding fume significantly reduced. It can be concluded that wearing protection gears with safety devices is one of important factors.

Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete

  • Mazloom, Moosa;Miri, Sayed Mojtaba
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.87-99
    • /
    • 2017
  • After passing through a magnetic field, the physical quality of water improves, and magnetic water (MW) is produced. There are many investigations on the effects of magnetic field on water that shows MW properties like saturation and memory effect. This study investigates the fresh and hardened properties of concrete mixed with MW, which contains silica fume (SF) and superplasticizer (SP). The test variables included the magnetic field intensity for producing MW (three kinds of water), SF content replaced cement (0 and 10 percent), water-to-cementitious materials ratio (W/CM=0.25, 0.35 and 0.45) and curing time (7, 28 and 90 days). The results of this study show that MW had a positive impact on the workability and compressive strength of concrete. By rising the intensity of the magnetic field which was used for producing MW, its positive influence on both workability and compressive strength improved. MW had greater positive impacts on samples containing SP that did not have SF. Moreover, the best compressive strength improvements of concrete achieved as W/CM ratio decreased.

Potential Use of Calcined Silt of Dam as a Pozzolan in Blended Portland Cement

  • Rabehi, Bahia;Ghernouti, Youcef;Driss, Miloud
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.259-268
    • /
    • 2014
  • This paper presents results of an experimental study which investigates the effect of industrial pozzolan made from calcined silt of dam at $750^{\circ}C$ for 5 h, on mechanical properties and durability of ordinary mortar, compared to the silica fume. Mortar specimens prepared with 5, 10 and 15 % of calcined silt to substitute cement were evaluated for their compressive and flexural strength, sulfate, acid and penetration of chloride ions resistance. The results were compared with ordinary mortar (without addition) and mortar containing 10 % of silica fume. The results obtained showed that the calcined silt of dam has a high potential to be used as a pozzolanic material, it improves the strength and the durability of mortar and compete the silica fume.

Bond Behavior of Carbon Fiber Polymer Reinforced Polymer Rebar in High Strength Concrete with Replacement Ratio of Silica Fume and Metakaolin (실리카퓸 및 메타카올린 치환률에 따른 고강도 콘크리트와 탄소섬유보강 폴리머 보강근의 부착거동)

  • Park, Chan-Gi;Won, Jong-Pil;Kim, Jong-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.51-60
    • /
    • 2008
  • This study is to relate the bond characteristics of CFRP rebar in high strength concrete incorporated with silica fume(SF) and metakaolin(MK). An direct bond test were performed to evaluate the effect of SF and MK on bond properties of high-strength concrete and CFRP rebar. The high strength concrete mix included four SF and MK mixes with 0%, 5%, 10% and 15%. Results of bond performance experiment in relation to pullout vs slip behavior of FRP rebar and high strength showed better performance of SF than MK. Also, the results showed the improved bond strength as replacement ratio of SF and MK increased. The relative bond strength in which $1.3{\sim}3.2$ of estimated values were obtained.

A Study on the Properties of Carbonation in the Multi-Component Concrete According to the Substitution Ratios of the Mineral Admixtures (혼화재료 치환에 따른 다성분계콘크리트의 탄산화 특성에 관한 연구)

  • Park, Young-Shin;Park, Jae-Myung;Ahn, Jae-Chul;Lee, Sea-Hyun;Lee, Moon-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.193-196
    • /
    • 2005
  • In this study, the purpose is to suggest the data on mixing ratio which effects on the carbonation of concrete by replacing various admixture such as silica fume, fly ash, slag powder. Thus, we have experimented the accelerated test on the carbonation related to hardened body of the concrete which was admixed by slag powder, silica fume, fly ash and it was cured for 4 weeks in carbonation accelerator after 28 days curing water. The result of this experiment showed that carbonation speed increased highly when admixtures be used to replacing by growing of admixture ratio. especially, the test sample which was replaced with silica fume 15$\%$ and slag powder 40$\%$, was promoted highly to carbonation.

  • PDF

Prediction of Compressive Strength of Concretes Containing Silica Fume and Styrene-Butadiene Rubber (SBR) with a Mathematical Model

  • Shafieyzadeh, M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • This paper deals with the interfacial effects of silica fume (SF) and styrene-butadiene rubber (SBR) on compressive strength of concrete. Analyzing the compressive strength results of 32 concrete mixes performed over two water-binder ratios (0.35, 0.45), four percentages replacement of SF (0, 5, 7.5, and 10 %) and four percentages of SBR (0, 5, 10, and 15 %) were investigated. The results of the experiments were showed that in 5 % of SBR, compressive strength rises slightly, but when the polymer/binder materials ratio increases, compressive strength of concrete decreases. A mathematical model based on Abrams' law has been proposed for evaluation strength of SF-SBR concretes. The proposed model provides the opportunity to predict the compressive strength based on time of curing in water (t), and water, SF and SBR to binder materials ratios that they are shown with (w/b), (s) and (p).This understanding model might serve as useful guides for commixture concrete admixtures containing of SF and SBR. The accuracy of the proposed model is investigated. Good agreements between them are observed.

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.

Effect of Silica Fume in Properties of Polymer Cement Mortar for Concrete Repair (실리카 퓸이 보수용 폴리머 시멘트 모르타르의 성질에 미치는 영향)

  • Song, Hyung-Soo;Lee, Chin-Yong;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.617-620
    • /
    • 2006
  • The EVA polymer is used as a modifier in the repair mortar, which contains various admixtures and mineral admixtures. It has been reported that the effect of polymer in cement mortar by the cement-polymer ratio only, but effect of admixtures over the polymer mortar was unknown. In this study, the fresh and mechanical properties of polymer cement mortar influenced by the range of silica fume ratio were investigated. It was found that with increasing the ratio of silica fume, mechanical properties(compressive strength, flexural strength, adhesive strength) of repair mortar is improved and drying shrinkage is increased.

  • PDF