• 제목/요약/키워드: Fully connected network

검색결과 145건 처리시간 0.024초

연결선 파괴에 의한 인공 신경망의 크기 축소 (The Size Reduction of Artificial Neural Network by Destroying the Connections)

  • 이재식;이혁주
    • 한국경영과학회지
    • /
    • 제27권1호
    • /
    • pp.33-51
    • /
    • 2002
  • A fully connected Artificial Neural Network (ANN) contains many connections. Compared to the pruned ANN with fewer connections, the fully connected ANN takes longer time to produce solutions end may not provide appropriate solutions to new unseen date. Therefore, by reducing the sloe of ANN, we can overcome the overfitting problem and increase the computing speed. In this research, we reduced the size of ANN by destroying the connections. In other words, we investigated the performance change of the reduced ANN by systematically destroying the connections. Then we found the acceptable level of connection-destruction on which the resulting ANN Performs as well as the original fully connected ANN. In the previous researches on the sloe reduction of ANN, the reduced ANN had to be retrained every time some connections were eliminated. Therefore, It tool lolly time to obtain the reduced ANN. In this research, however, we provide the acceptable level of connection-destruction according to the size of the fully connected ANN. Therefore, by applying the acceptable level of connection-destruction to the fully connected ANN without any retraining, the reduced ANN can be obtained efficiently.

다양한 동작 학습을 위한 깊은신경망 구조 비교 (A Comparison of Deep Neural Network Structures for Learning Various Motions)

  • 박수환;이제희
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권5호
    • /
    • pp.73-79
    • /
    • 2021
  • 최근 컴퓨터 애니메이션 분야에서는 기존의 유한상태기계나 그래프 기반의 방식들에서 벗어나 딥러닝을 이용한 동작 생성 방식이 많이 연구되고있다. 동작 학습에 요구되는 네트워크의 표현력은 학습해야하는 동작의 단순한 길이보다는 그 안에 포함된 동작의 다양성에 더 큰 영향을 받는다. 본 연구는 이처럼 학습해야하는 동작의 종류가 다양한 경우에 효율적인 네트워크 구조를 찾는것을 목표로 한다. 기본적인 fully-connected 구조, 여러개의 fully-connected 레이어를 병렬적으로 사용하는 mixture of experts구조, seq2seq처리에 널리 사용되는 순환신경망(RNN), 그리고 최근 시퀀스 형태의 데이터 처리를 위해 자연어 처리 분야에서 사용되고있는 transformer구조의 네트워크들을 각각 학습하고 비교한다.

Performance analysis of large-scale MIMO system for wireless backhaul network

  • Kim, Seokki;Baek, Seungkwon
    • ETRI Journal
    • /
    • 제40권5호
    • /
    • pp.582-591
    • /
    • 2018
  • In this paper, we present a performance analysis of large-scale multi-input multi-output (MIMO) systems for wireless backhaul networks. We focus on fully connected N nodes in a wireless meshed and multi-hop network topology. We also consider a large number of antennas at both the receiver and transmitter. We investigate the transmission schemes to support fully connected N nodes for half-duplex and full-duplex transmission, analyze the achievable ergodic sum rate among N nodes, and propose a closed-form expression of the achievable ergodic sum rate for each scheme. Furthermore, we present numerical evaluation results and compare the resuts with closed-form expressions.

DRNN을 이용한 최적 난방부하 식별 (Optimal Heating Load Identification using a DRNN)

  • 정기철;양해원
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1231-1238
    • /
    • 1999
  • This paper presents an approach for the optimal heating load Identification using Diagonal Recurrent Neural Networks(DRNN). In this paper, the DRNN captures the dynamic nature of a system and since it is not fully connected, training is much faster than a fully connected recurrent neural network. The architecture of DRNN is a modified model of the fully connected recurrent neural network with one hidden layer. The hidden layer is comprised of self-recurrent neurons, each feeding its output only into itself. In this study, A dynamic backpropagation (DBP) with delta-bar-delta learning method is used to train an optimal heating load identifier. Delta-bar-delta learning method is an empirical method to adapt the learning rate gradually during the training period in order to improve accuracy in a short time. The simulation results based on experimental data show that the proposed model is superior to the other methods in most cases, in regard of not only learning speed but also identification accuracy.

  • PDF

공분산과 모듈로그램을 이용한 콘볼루션 신경망 기반 양서류 울음소리 구별 (Convolutional neural network based amphibian sound classification using covariance and modulogram)

  • 고경득;박상욱;고한석
    • 한국음향학회지
    • /
    • 제37권1호
    • /
    • pp.60-65
    • /
    • 2018
  • 본 논문에서는 양서류 울음소리 구별을 CNN(Convolutional Neural Network)에 적용하기 위한 방법으로 공분산 행렬과 모듈로그램(modulogram)을 제안한다. 먼저, 멸종 위기 종을 포함한 양서류 9종의 울음소리를 자연 환경에서 추출하여 데이터베이스를 구축했다. 구축된 데이터를 CNN에 적용하기 위해서는 길이가 다른 음향신호를 정형화하는 과정이 필요하다. 음향신호를 정형화하기 위해서 분포에 대한 정보를 나타내는 공분산 행렬과 시간에 대한 변화를 내포하는 모듈로그램을 추출하여, CNN의 입력으로 사용했다. CNN은 convolutional layer와 fully-connected layer의 수를 변경해 가며 실험하였다. 추가적으로, CNN의 성능을 비교하기 위해 기존에 음향 신호 분석에서 쓰이는 알고리즘과 비교해보았다. 그 결과, convolutional layer가 fully-connected layer보다 성능에 큰 영향을 끼치는 것을 확인했다. 또한 CNN을 사용하였을 때 99.07 % 인식률로, 기존에 음향분석에 쓰이는 알고리즘 보다 높은 성능을 보인 것을 확인했다.

Modeling of Convolutional Neural Network-based Recommendation System

  • Kim, Tae-Yeun
    • 통합자연과학논문집
    • /
    • 제14권4호
    • /
    • pp.183-188
    • /
    • 2021
  • Collaborative filtering is one of the commonly used methods in the web recommendation system. Numerous researches on the collaborative filtering proposed the numbers of measures for enhancing the accuracy. This study suggests the movie recommendation system applied with Word2Vec and ensemble convolutional neural networks. First, user sentences and movie sentences are made from the user, movie, and rating information. Then, the user sentences and movie sentences are input into Word2Vec to figure out the user vector and movie vector. The user vector is input on the user convolutional model while the movie vector is input on the movie convolutional model. These user and movie convolutional models are connected to the fully-connected neural network model. Ultimately, the output layer of the fully-connected neural network model outputs the forecasts for user, movie, and rating. The test result showed that the system proposed in this study showed higher accuracy than the conventional cooperative filtering system and Word2Vec and deep neural network-based system suggested in the similar researches. The Word2Vec and deep neural network-based recommendation system is expected to help in enhancing the satisfaction while considering about the characteristics of users.

다중 모델을 이용한 완전연결 신경망 기반 화면내 예측 (Intra Prediction Using Multiple Models Based on Fully Connected Neural Network)

  • 문기화;박도현;김민재;권형진;김재곤
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.758-765
    • /
    • 2021
  • 최근 딥러닝 기술을 비디오 부호화에 적용하는 다양한 연구가 진행되고 있다. 본 논문은 차세대 비디오 코덱인 VVC(Versatile Video Coding)에 채택된 신경망 기반의 기술인 MIP(Matrix-based Intra Prediction)를 확장한 완전연결계층(Fully Connected Layer) 기반의 다중 모델을 이용하는 화면내 예측 부호화 기법을 제시한다. 또한 다중 화면내 예측 모델을 위한 효율적인 학습기법을 제안한다. HEVC(High Efficiency Video Coding)에서의 성능검증을 위해 VVC의 MIP와 제안하는 완전연결계층 기반 다중 화면내 예측 모델을 HEVC의 참조 소프트웨어인 HM16.19에 추가적인 화면내 예측모드로 구현하였다. 실험결과 제안하는 방법이 HM16.19와 VVC MIP 대비 각각 0.47%과 0.19% BD-rate 성능향상이 있음을 확인하였다.

랜덤 포레스트 분류기 기반의 컨벌루션 뉴럴 네트워크를 이용한 속도제한 표지판 인식 (Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest)

  • 이은주;남재열;고병철
    • 방송공학회논문지
    • /
    • 제20권6호
    • /
    • pp.938-949
    • /
    • 2015
  • 본 논문에서는 외부압력에 의한 외형 손상이나 빛의 방향에 따른 색상 대비변화 등에 견고한 영상기반 속도 제한 표지판 인식 시스템 설계를 제안한다. 속도 제한 표지판 인식을 위해서 최근 패턴 인식 분야에서 뛰어한 성능을 보여주고 있는 CNN (Convolutional neural network)을 사용한다. 하지만 기존의 CNN은 특징 추출을 위해 다수의 은닉층이 사용되고 추출된 결과에 대해 MLP(Multi-layer perceptron) 등과의 완전 연결(fully-connected) 방식을 사용함으로 학습과 테스트 시간이 많이 걸리는 단점이 있다. 본 논문에서는 이러한 단점을 줄이기 위해 2계층의 CNN을 구성하고 패턴 분류를 위해 랜덤 포레스트(Random forest)를 결합하여 완전 연결이 아닌 랜덤 연결 방식을 적용하였다. GTSRB(German Traffic Sign Recognition Benchmark)데이터의 교통안전표지판 중에서 8개 속도 제한 표지판 데이터를 사용하여 제안하는 방식이 SVM (Support Vector Machine)이나 MLP 분류기를 적용할 때 보다 성능이 우수함을 입증하였다.

A New Recurrent Neural Network Architecture for Pattern Recognition and Its Convergence Results

  • Lee, Seong-Whan;Kim, Young-Joon;Song, Hee-Heon
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권1호
    • /
    • pp.108-117
    • /
    • 1996
  • In this paper, we propose a new type of recurrent neural network architecture in which each output unit is connected with itself and fully-connected with other output units and all hidden units. The proposed recurrent network differs from Jordan's and Elman's recurrent networks in view of functions and architectures because it was originally extended from the multilayer feedforward neural network for improving the discrimination and generalization power. We also prove the convergence property of learning algorithm of the proposed recurrent neural network and analyze the performance of the proposed recurrent neural network by performing recognition experiments with the totally unconstrained handwritten numeral database of Concordia University of Canada. Experimental results confirmed that the proposed recurrent neural network improves the discrimination and generalization power in recognizing spatial patterns.

  • PDF

몰포러지 신경망 기반 딥러닝 시스템 (Deep Learning System based on Morphological Neural Network)

  • 최종호
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.92-98
    • /
    • 2019
  • 본 논문에서는 몰포러지 연산을 기본으로 하는 몰포러지 신경망(MNN: Morphological Neural Network) 기반 딥러닝 시스템을 제안하였다. 딥러닝에 사용되는 레이어는 몰포러지 레이어, 풀링 레이어, ReLU 레이어, Fully connected 레이어 등이다. 몰포러지 레이어에서 사용되는 연산은 에로전, 다이레이션, 에지검출 등이다. 본 논문에서 새롭게 제안한 MNN은 기존의 CNN(Convolutional Neural Network)을 이용한 딥러닝 시스템과는 달리 히든 레이어의 수와 각 레이어에 적용되는 커널 수가 제한적이다. 레이어 단위 처리시간이 감소하고, VLSI 칩 설계가 용이하다는 장점이 있으므로 모바일 임베디드 시스템에 딥러닝을 다양하게 적용할 수 있다. MNN에서는 제한된 수의 커널로 에지와 형상검출 등의 연산을 수행하기 때문이다. 데이터베이스 영상을 대상으로 행한 실험을 통해 MNN의 성능 및 딥러닝 시스템으로의 활용 가능성을 확인하였다.