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A New Recurrent Neural Network Architecture
for Pattern Recognition and lis
Convergence Results

Seong-Whan Lee, Young-Joon Kim, and Hee-Heon Somg

Abstract

In this paper, we propose a new type of recurrent neural network architecture in which each output unit is connected with
itself and fully-connected with other output units and all hidden units. The proposed recurrent neural network differs from
Jordan’s and Elman’s recurrent networks in view of functions and architectures because it was originally extended from the
multilayer feedforward neural network for improving the discrimination and generalization power. We also prove the

convergence property of learning algorithm of the proposed recurrent neural network and analyze the performance of the
proposed recurrent neural network by performing recognition experiments with the totally unconstrained handwritten numeral
database of Concordia University of Canada. Experimental results confirmed that the proposed recurrent neural network improves
the discrimination and generalization power in recognizing spatial patterns.

I. Introduction

Recently, a number of neural network models have been
implemented for pattern recognition [1]{2]. Especially,
multilayer feedforward neural networks have shown their
effectiveness in recognizing spatial patterns of various styles
and sizes [3][4][5]. However, these approaches can only
provide a partial solution to real-world data because they
have shown insufficient learning capability for the similar
patterns. In order to overcome this problem, it is needed that
the output results of the feedforward neural networks are
analyzed and reused in training the input patterns.

In general, for the case of recognizing spatial patterns with
multilayer feedforward neural network, the hidden units are
learned to maximize the useful information from input
pattern and the output units are learned to discriminate the
information given from hidden units [6][7]. Therefore, it
seems to be reasonable to provide more information to output
units in order to improve the discrimination power in spatial
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pattern recognition.

A recurrent neural network offers a framework suitable for
reusing the output values of the network in training.
Recently, researches applying recurrent neural network to
spatial pattern recognition such as handwritten character
recognition are in progress and some of them have shown
promising results [8][9][10]. However, these approaches
are mostly based on Jordan’s and Elman’s recurrent neural
networks which were proposed for dynamic patterns.
Therefore, they may be inefficient for spatial pattem
recognition.

In this paper, we propose a new type of recurrent neural
network architecture which is adequate for spatial pattern
recognition such as handwritten character recognition. The
proposed recurrent neural network differs from Jordan’s and
Elman’s recurrent networks in view of functions and
architectures because it was originally extended from the
multilayer feedforward neural network architecture for
improving discrimination and generalization power. The
proposed recurrent neural network consists of three layers in
which each output unit is connected with itself and
fully-connected with other output units and all hidden units.

We also prove the convergence property of learning
algorithm in the proposed recurrent neural network and
analyze the performance of the proposed recurrent neural
network by performing recognition experiments with the
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totally unconstrained handwritten numeral database of
Concordia University of Canada. Experimental results con-
firmed that the proposed recurrent neural network improves
the discrimination and generalization power in recognizing
spatial patterns.

The rest of this paper is organized as follows. Section II
briefly reviews the previous recurrent neural network arch-
itectures. A new type of recurrent neural network is proposed
and its convergence property is proven in Section III. The
experimental results are presented for verifying the effe-
ctiveness of the proposed recurrent neural network in Section
IV and the concluding remarks are given in Section V.

. Previous Recurrent Neural Network
Architectures

An early use of a recurrent network can be found in the
work of Anderson etal [11][12]. They used the fully-
connected neural network called Brain State in a Box(BSB)
to model psychological effects seen in probability learning.
In this network, each unit which has no self connection is
fully-connected with every other units in the network.

Content addressable memory of Hopfield [13] can be
viewed as the minimization of an energy function where
memories correspond to local minima in the energy spaces.
Hopfield’s original model was a network of fully-inter-
connected processing units whose output was computed using
a linear threshold. Later, Hopfield developed a continuous
version [14]. The new model uses a sigmoid transfer
function as the activation function for the processing units
and units are updated continuously according to the
differential equation.
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Fig. 1. Jordan’s recurrent neural network.

Jordan developed a network model capable of displaying
temporal variation and temporal context dependence [15]
(Fig. 1). The Jordan’s network served as useful role in motor
control system. This type of network model differs from
traditional views of motor control in that it emphasizes that
the processor does not store and retrieve output vector

sequences in a linked list or any other abstract data structure.
Rather, the trajectories are computed at run-time as the result
of a dynamic process. The units calculating trajectories can
be classified into four types: plan units, state units, hidden
units, and output units. The state .units possess inputs
connected to themselves and other units within the state layer
possess the standard connections to the output units.

Elman developed a simple recurrent neural network [16]
(Fig. 2). In this approach, rather than the outputs of the
network are fed into input units, the activation results of the
hidden units are fed into input units. While Jordan’s recurrent
neural network has appeared in a variety of control appli-
cations, Elman’s recurrent neural network has been often
applied to the problem of symbolic sequence prediction.

Learning methods for Jordan’s and Elman’s recurrent
neural networks are extensions of the backpropagation
learning method. A very general learning algorithm is that of
Williams and Zipser [17]. Kuan et o/, provided a rigorous
convergence analysis of an extension of backpropagation for
recurrent neural networks including Jordan’s and Elman’s
recurrent neural networks as special cases [18].

Output layer
. One-to-one
Hidden layer fixed weight
connections
Input layer

Fig. 2. Elman’s recurrent neural network.

The architectures specified by Jordan and Elman employed
first-order connections between units. That is, the activation
flowing from one unit to another is merely scaled by the
connection strength (w ;0,).
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Fig. 3. Pollack’s sequential cascaded neural network.

However, the high-order recurrent neural network which
has been proposed by Rumelhart ef /. [19] multiplicatively
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combine incoming activations (w;0,). One benefit of
switching to higher order network is that more functions can
be loaded into a network with fewer resources. Just as
first-order connections underlie Jordan’s and Elman’s recur-
rent neural networks, multiplicative connections have formed
the foundations of several recurrent networks such as
Pollack’s sequential cascaded neural network [20] (Fig. 3)
and the higher order recurrent neural network of Giles et al.
[21].

For further information on the previous recurrent neural
network architectures, refer to the works of Kolen [12].

. Proposed Recurrent Neural Network

In this section, we propose a new type of recurrent neural
network architecture and prove its convergence property.

1. Architecture of the Proposed Recurrent Neural Net-
work

The proposed recurrent neural network architecture consists
of three layers as shown in Fig. 4. The proposed recurrent
neural network differs from Jordan’s and Elman’s recurrent
networks in view of functions and architectures because it
was originally extended from the multilayer feedforward
neural network for improving discrimination and genera-
lization power in recognizing spatial patterns.

Hidden layer

Input Iayer
Fig. 4. Proposed recurrent neural network architecture.

Each hidden unit is fully-connected with all input units and
each output unit is connected with itself and fully-connected
with other output units and all hidden units. Therefore, the
output value of ith output unit at cycle ¢ is obtained as
follows:

o8B =10 E, w0}(D +70) )

Yin= gl z 3op(t—1) @)

where, o/(#) is the output value of jth hidden unit -at.cycle
t, w; is the weight between jth hidden unit and ith output
unit, z, is the weight between  #th output unit and ith
output unit, »,(# is the recurrent value from output units at
cycle t—1, p is the number of hidden units, and ¢ is the
number of output units. The activation function f is sigm-

oidal. The output value of ¢th hidden unit at cycle ¢ is
obtained as follows:

o ()= FCE wyis() @

where, 7,(#) is the output value of jth input unit at cycle
t, w; is the weight between jth input unit and /th hidden

unit, and # is the number of input units. The input units
have linear transfer function.

The proposed recurrent neural netwok operates as follows.
The activation values of output units are initially set to be
zero. The input feature values are fed into input units which
have linear transfer function and the output values of input
units are forward propagated until the output units are active.
These activation values of output units are used in next cycle
in order to provide more information.

Because the output units in a feedforward network are only
activated by units in previous layers, the activation values of
previous cycle have an effect on the results of output units
in current cycle. For the case of training similar spatial
patterns, the output units in previous cycle produce ambi-
guous activation values. However, based on these ambiguous
activation values, the weights in output units can be trained
to discriminate these ambiguous activation values of previous
cycle. Therefore, the discrimination power can be improved.

2. Convergence Property of Learning Algorithm in the
Proposed Recurrent Neural Network

We now prove the convergence property of Williams-
Zipser learning algorithm [17] in the proposed recurrent
neural network. Our result follows from the results of Kuan
and White [22] and Kuan e o/, [18]. Kuan et o/ provided
a rigorous convergence analysis of an extension of back-
propagation for recurrent neural networks containing Jordan’s
and Elman’s recwrrent neural networks as special cases.

We considered the same conditions and convergence
results as those of the Theorem in the work of Kuan er al.
[18] because the stochastic process with respect to input
sequences, the measure of the network error, the learning
recursions, and the limit condition of the weight change of
the proposed recurrent neural network are equivalent to those
of the Jordan’s and Elman’s networks in spite of the
difference in architecture. Thus, we describe only the
assumptions of the Theorem which are based on the modified
output function and recurrent variable for the proposed



JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1998. 11

recurrent neural network.
We now introduce some mathematical notations and a
stochastic process [18] which are necessary for those assu-

mptions.
Suppose that we observe a realization of a sequence
{2} = (Z:¢=0,1,...} of random vectors, where

Z,=(Y, xT (with 7 denoting the transposition operator).
We interpret Y, as a target value at cycle ¢ and X, as a
vector of input variables influencing v, X, may contain the
lagged values of Y, (e.g., Y., Y,.,) as well as the lagged
values of other variables.

Let X'=(X, ...,X,) denote the history of the process X
from cycle zero through cycle : and f,(x"6) denote the
approximation function as ¢ ranges over the patameter space
® < R, where, s is the number of weights in the network.

In this situation, the approximation error ¢,(4) is defined
as ¢(6)=Y,—-f(X', 6 and ¢ is selected as follows:

6" = min! lim E(e, (8)*)/2 4

where, min! designates a local minimizer of its argument
and E(.) denotes mathematical expectation.

In general, stochastic approximation estimates a solution to
the equation M(8)=0 (with M: 6— R*) as

9r+1 = 9/"‘77/7”1(2" 9/), t=0,1,..., (5)

where, M(6)= P—m E(m (2" 6), =n, is a ‘‘learning rate”
sequence, and
m(Z" )= ve,(0)e(d) ©)

We take 7, as the output function of a recurrent neural
network with output given in cycle : by

0,=F(a+Af8+R"35) )

with
A=GX[y), ji=l....q ®)
Ri=o(X,_,R,_ 6 )

where, F: R—R, G:R— R are given functions, parameter o,
8, 7 and ¢ collected together in the network weight vector
8="(a, BT y76T)7, and R, is the recurrent values determined
from previous input (X,.,), previous recurrent values (R, ,),
and network weight (@) through o. In the proposed recurrent
neural network, the function p is defined as follows:

(X =1, Ry, O)=F(a+ AT A+ R"8). 19)
Because ¢, is defined as e,= ¥,—0, network error

depends on Z, R, and ¢. Thus, this network is a particular
case of a generic class of models with network errors

e.=u(Z, R, 0) (11)

where, the function » results from the assumed network
output function, and- R, is determined by network recurrence

and given as
Ri=0(Z,.,,0(Z\5.....00,0)=1(Z2", ). (12)
Network error is then
el8)=u(Z, 1(Z"",0).0). 13)
The gradient ve, needed for learning is

vel (d) = uo(Z, lI(Z'_l ,0), 0)T+ v 11(21_1 ,0) (]14)
u (2,102, 8y, 8)7

where, U, is the derivative of . with respect to @
(uy=vu), u, is the derivative of « with respect to
recurrent variables, and v/, is the gradient matrix of /, with
respect to 4.

A computationally convenient alternative results from
exploiting the recursive structure of R, Because

R=1(Z2"7 . 0 =p(Z,;,1_(27% 0,8, (15

it follows that

VIZTL0) =002 R OTHVLLZT 0 (1)
Pr(Z/—1 LR, 6)T

where, o, is the Jacobian matrix of , with respect to ¢

(05=v,) and p, is the Jacobian matrix of o with respect

to recurrent variables. With a,=v/(Z""', 8), we have a

recursion as follows:
a=pZ RO +2 02, RLLOT.  (AD)

The recursion for &, and a, suggests a learning algorithm
that updates R, and o, with the weight update in cycle ¢ but
neglects the effect of weight updates on past values. If the
system does not have ‘‘too long” memory and if we
eventually get ‘‘close” to ¢*, then sufficiently little may be
lost by ignoring the update effects.

Thus, we begin by picking arbitrary initial weights 3,
recurrent variables £, and gradient matrix Z,. To update
network weights we compute the network error and the
gradient as follows:

e = u(Z, Ry 8 (18)
Va=uZy Ry 8)7+ Byulzy, R 8)7. 19)

Then, the weights in cycle 1 are calculated as follows:
b= B —mv & - e. (20)

The recurrent variables and gradient matrix are updated for
use in cycle 1 to

ﬁl = P(Zo, ﬁo, 90) (2]1)

and
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Bi=p00(Z. By, 87+ Bop2y Ry, 7. (22)

Now the network error and the gradient are calculated as
follows:

eAl = u(Z; , ﬁl . 91) (23)

voe=uyz, R B8+ Bulz, R, ). 24)

Then, the weights in cycle 2 are obtained as follows:
8 = 8 —mv e - . . (25)

At cycle ¢ we have targets and inputs Z, recurrent
variables R, weights 3, and gradient matrix Z, permi-
tting us to compute

é\l = ll(Z/, ﬁr. 9/)
ulZ, R, 8)"+ ®,uz,, R, 8)7 (26)

B —nv e - e

ﬁH-l o(Z,, R\u 9:)

Loy
I
o

and

Bi1=00Z, R, 8)7+ 2,02, R, 0)7. (27

A potential difficulty is that nothing prevents 8,—o. To,

avoid this, we employ a projection operator r : R'—@, where
@ is a compact subset of R°. The projected process z( 8,)
is bounded, and 9, is defined as 8, = x( §,) whenever

9. = ©. {6,) also denotes the projected process for notational

convenience.

In order to describe our assumptions of the Theorem, we
introduce the notion of near epoch dependent(NED) on an
underlying mixing process [18].

Let {V,) be a stochastic process on a probability space
(2, ¢f, P) and define the mixing coefficients

$n= Sups SUP \reo . Ge i rprn |P(GIF) —P(G)L (28)
A= SUD; SUD iFecs . Geon |PCGNF)=P(GYP(F)I  (29)

where, cof,=o(V,,...,V,) and the o-field is generated by
fet V.. ....V. When ¢,—0 or q,—0 as m—o, {V,} is
called as ¢-mixing or ¢-mixing [18]. When ¢, = O(m*) for
some A¢ —a, {V,} is called as ¢-mixing of size —q, and
similarly for a,,

Let 1Zl,=(E1ZJH"Y and E{I(Z,=E(Zlc¢f!it?), and let
L,(P) denote the class of random variables with || Z,[,< co.
The dependence of {Z,} on an underlying process {V,} is
expressed as follows [18].

Definition 3.1 Let {Z} be a sequence of random variables
belonging to L,(P), and let {v,} be a stochastic pr/ocess on
(2, calF, P). Then {z,) is NED on {V,} of size —gq if

o= sup 2, — EX7(Z)l, is of size —a.

The data generating process is described as follows.

Assumption A.l (2, ¢, P) is a complete probability space
which is defined by the sequence of c/measurable functions

v+l

1Z: 92— R ,t=0,1,2,...} with sup »,]Z)<e <, where
ve N is the size of input vector. {Z,} is NED on {V,} of
size - % where {V,¢=0,+1,+2,...} is a mixing process on

2, of, P) with ¢, of size ——%— or a, of size —1. For each

t=0,1,...,2, is measurable c¢f=o(..., V., V).

The following condition restricts the network error
function.

Assumption A.2 Network output is given by
o= Fla+ £, (5,677 +78)) (30)
and network error is given by
u(z,r,0)=y=F(a+ 2 (8,GTr) +778)). 31)
Then, the network recurrence is obtained as follows:
o(z. 7.0 = Fla+ 3 (86T + r8)). 32

The mean value theorem for such functions ensures

lo (2, 7,0 )vr, —nl. (33

— sup
lo(e, n.0) =p(z. nOI<( 0

The following condition restricts network recurrence.

Assumption A.3 Network recurrence is determined by
equation (32). Put

cr= sup ey |F(b).

Then o is such that sum,_ . 181<c7'(1—¢) for some &>0.

Because the Jacobian matrix of o with respect to recurrent
variables is calculated as follows:

o0z, 7. )=F(a+ gl BiG(xTy) + gl r78) ,i':x 3 (34)
the restriction of network recurrence is given by

oz, 7.0 < |F(a+ £ 8GTr)+ T oo isl (B5)

< cr ;"l:a,-l. (36)

Now, the learning recursions are formally described as
follows.
Assumption A.4 (i) Let K, be a compact subset of R**’
where  is the size of recurrent variable, and let RyeK,
X,=K.,and 8, be chosen arbitrarily and independently of




JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1986. 113

{z) . For t=0,1,2,..., define
é = u(Z, R. ) 37
v 6 = ugZ, R, Byr+ B,ulZ, R, 8)7 (38)
By = 2l 8=V & & 39)
Ry = o(Z, R, 8) 40)
and

/A\H-l = 04(Z,, Ry, 9/)T‘+’ ’A\tpr(zl, ﬁ,, ?,)T (4]1)

where, 7: R°— @ is a projection operator restricting { 4;} to

the compact set &.
(i) {7} is a sequence of positive real numbers such that

EO”ROO and §00,=°°.

One more condition is required to state Kuan and White’s
convergence results [22]; it guarantees the existence of the
limit of E(v ¢,8) - ¢,(8)). We define a function / as

kA, 8) = —luy(z, 7, DT+ o uz 70N ulz, r 8) 42)

where, i=(z7,s7, vecT2)?. We also define "Ay,) as
A(0)= A8, AT, A5 (6)NT, where A(9)=Z, 1;(8)
=/(Z"", 6), and A,°(4)= vec v I1,(Z'7, 6).

Our final condition is given as follows.

Assumption A.S For-each 6= 6, n(0)= lim E(k(A,(8), 6))

exists.

Kushner and Clark’s results [23] establish certain proper-
ties of the piecewise linear interpolations of { 8} with

. . . =1
interpolation intervals {5} . Define ¢,= 20 7 t21, 1=0.
The interpolated process is defined as

Po(l‘)= 7/1_1(1':+1_T) 9z+7;1(7_fz) 91+1- t€ (1), 7441] (43)

and its leftward shifts are defined as

Bl ) r2 -1
P,(r)-—{ 2, -7, t=0,1,2,... @4
We thus have a sequence { 3,(- )} of c_ontinuous‘\function
on (— oo, o). In stating the result, we write 8 —@" as t—w
if o, ¢l 8, —0]1—0 as t—co. Also, for a continuous vector
field »(.) on @, define the vector field =[v(-)] as

Tle(8)]) = lﬁiir(x)[n(0+6u(6))—-6]/8, ) 45)

when the limit is unique. When ¢ is in © but not on its
boundary, sufficiently small 6+ 50() is in @ for ¢, so that
7l0(8)] = v(8).

The desired convergence of proposed recurrent network
now follows immediately.

Theorem 3.2 Suppose that Assumption A.1~A.5 hold. Then

(a) There exists a P-null set @ such that for we,

{8,(-)}is bounded and equicontinuous on bounded
intervals, and { 3,(- )} has a convergent subsequence whose
limit 3,(- ) satisfies the limit expectation 8= x{%(8)].

Let @ be the set of locally asymptotically stable (in the
sense of Liapunov) equilibria in for this limit expectation
with domain of attraction 4(©*')c R

(b) If @cd(®), then 8 —8" as t—oo with probability 1.

(c) If ® is not contained in 4(6"), but for each owe
2,. 9,(w) enters a compact subset of 4(@") infinitely often,
then 83— as t—c with probability 1.

(d) Given the conditions in (c), if @ contains only finitely
many points, then there exists a measurable mapping
6 0x @xK,xK,—© such that 3, —6(-, 8, B, 54)—0
as t—oo with probability 1.

Proof: The proof follows immediately from the proof of the
Theorem in the work of Kuan and White [22] which was
derived from the fundamental results of Kushner and Clark
[23].

V. Experimental Results

In this section, we present experimental results and analyze
the performance of our proposed recurrent neural network. In
order to verify the performance of the proposed recurrent
neural network, recognition experiments with the totally
unconstrained handwritten numeral database of Concordia
University of Canada were performed [2].

1. Database

The handwritten numeral database of Concordia University
consists of totally unconstrained 6,000 numerals originally
collected from dead letter envelopes by the U. S. Postal
Services at different locations in the U. S. The numerals of
this database were digitized in bilevel on a 64 x 224 grid of
0.153 mm square elements, giving a resolution of app-
roximately 166 PPI [24]. 4,000 numerals were used for
training and 2,000 numerals were used for testing.

2. Recognition Experiments

In order to demonstrate the performance of the proposed
recurrent neural network, four kinds of neural network
classifiers have been considered. These are as follows:

Feed forward NN: Simple three layer feedforward neural
network

Jordan RNN: Jordan’s recurrent neural network

Elman RNN: Elman’s recurrent neural network

Proposed RNN: Proposed recurrent neural network
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The input pattern has been size-normalized by 16 x 16 and
then directional feature vectors for horizontal, vertical, right-
diagonal, and left-diagonal directions are calculated from a
size-normalized image by using Kirsch-like masks [25]. And
each 16 x 16 directional feature vector is compressed to 4 x
4 features. Also, in order to consider the global
characteristics of input image, we compressed the 16 x 16
normalized input image into 4 x4 image and used this
compressed image as global features. As a result, final
features consist of 5 x4 x4 features; 4 x4 x4 local features
and 1 x4 x4 global features. These features have been used
as input values of neural networks in which the input layer
and the hidden layer consist of 80 units respectively, and the
output. layer consists of 10 units. The recurrent neural
network accepts the feature values in twice for a character in
order to activate output units.

We considered backpropagation learning algorithm [19]
for simple feedforward neural network and Williams-Zipser
algorithm [17] for recurrent neural networks. Becduse the
size of training sequence is two, namely, ¢ and ¢, for each
character in training the recurrent neural networks, the
modification of weights is only performed in cycle .

3. Experimental Results and Analysis

Fig. 5 shows the learning curves for the four different neural
networks. As shown in Fig. 5, the proposed recurrent neural
network greatly improved the convergence speed.

0.04 T T T T T
Feedforward NK —

Proposed RNN —

o 10 20

30
Epoch

Fig. 5. Learning curves for the four different neural
networks.

We also have examined the error rates vs. training set size
in order to verify the generalization power of the proposed
network. The number of training set has been varied from
800 to 4,000, fixing the number of testing set to 2,000. Fig.
6 shows the changes of the error rate without rejection on the
testing set as thd size of training set increases. As can be
observed from Fig. 6, the proposed recurrent neural network
and Elman recurrent neural network showed superior genera-
lization power ‘to the other neural networks.

40 T T T

Poodforvord RN —o—
Jordan RNN -+--

s b Elmon RNN -0 |
Propoosod RRN =+—

Error rateog (9}

0500 1600 2400 3200 4000
Number of training set

Fig. 6. Error rates vs. training set size for the four

different neural networks.

Table 1 and 2 show the error rates without rejection on the
training set and testing set, respectively. As indicated in
Table 2, for the case of using the simple feedforward neural
network, the error rate was 3.7%. And, for the case of using
the other three types of recurrent neural networks, the error’
rates were 3.1%, 2.9%, and 2.7%, respectively. These results
showed that the proposed recurrent neural network has very
good discrimination power compared to the other recurrent
neural networks.

Table 1. Error rates on the training set.

Method |Feedforward NN|Jordan RNN | Elman RNN | Proposed RNN

Error
0.850% 0.650% 0.625% 0.575%

rates

Table 2. Error rates on the testing set.

Method |Feedforwad NN (Jordan RNN | Elman RNN |Proposed RNN

Error -
3.7% 3.1% 2.9% 2.7%
rates

Table 3 shows the reductions of error rate for each
recurrent neural network compared to the simple feedforward
neural network in Table 2. As shown in Table 3, the use of
proposed recurrent neural network brought about 24.1%
reduction of error rate compared to the simple feedforward
neural network. However, for the case of using Jordan
recurrent neural network and Elman’s recurrent neural
network, the reductions of error rate are 20.0% and 18.0%,
respectively. The 24.1% reduction of error rate represents
statistical significance i unconstrained handwritten numeral
recognition.

We also have analyzed the error rates vs. rejection rates to
evaluate the discrimination performances of each network on
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testing set. The results are described in Fig. 7.

Table 3. Reductions of error rate for each recurrent
neural network compared to the simple feed-
forward neural network.

Method Jordan RNN [Elman RNN [Proposed RNN

Reductions of error rate 18.0% 20.0% 24.1%

T
Feedforward NN -o—
Jordan RNN -+--
Elmon RNN -©--

Proposed RNN -#+~ |

Brror ratos {G)

14

4 6
Rejection rates (9)

Fig. 7. Ermror rates vs. rejection rates for the four
different neural networks architectures.

Table 4 shows that the proposed neural network can

classify similar numerals efficiently.

Table 4. Confusion matrix for the Proposed RNN.

Class| O 1| 2| 3|4} 5| 6| 7| 8 9|Substituted Recognized
0 (195 1|2 2 2.5% 97.5%
1 196} 2 1 1 2.0% 98.0%
2 195| 2 112 2.5% 97.5%
3 2 (194 311 3.0% 97.0%
4 2|1 194 2 1 3.0% 97.0%
S (1|1 2 195| 1 2.5% 97.5%
6 11 11119 2.0% 98.0%
7 2 2 194/ 1 | 1 3.0% 97.0%
8 1|3 3 194 3.0% 97.0%
9 1 1)1 3,1 (193 3.5% 96.5%

Average 2.7% 97.3%

V. Concluding Remarks

from the multilayer feedforward neural network for impro-
ving the discrimination and generalization power.

In general, for the case of recognizing spatial patterns with
multilayer feedforward neural network, the hidden units are
learned to maximize the useful information from input
pattern and the output units are learned to discriminate the
information given from the hidden layer. Therefore, providing
more information to output units in order to improve the
discrimination power seems natural.

In this paper, we also proved the convergence property of
learning algorithm in the proposed recurrent neural network
and analyzed the performance of the proposed architecture by
performing the recognition experiments with the totally un-
constrained handwritten numeral database of Concordia Uni-
versity of Canada. Experimental results confirmed that the
proposed recurrent neural network improves the discrimina-
tion and generalization power in recognizing spatial patterns.

Further investigation should be made, however, to design
an optimal recurrent neural network architecture which has
good generalization power and to implement it on parallel
hardwares.
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