• 제목/요약/키워드: Full-vehicle Dynamics Model

검색결과 63건 처리시간 0.028초

자기부상열차 차간 댐퍼의 곡선주행에의 효과 분석 (Effect of Damper Between Maglev Vehicles on Curve Negotiation)

  • 김기정;한형석;김창현;양석조
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.581-587
    • /
    • 2013
  • 반경이 작은 곡선이 종종 존재하는 도시 내에서 운행되는 도시형자기부상열차는 전자석과 레일 사이에 기계적 접촉 없이 곡선주행을 할 수 있어야 한다. 특히, 안내제어가 없는 자기부상열차에 있어서는 승차감을 확보하면서 곡선추종성능을 향상시키기 위하여 차간 댐퍼의 설치가 고려된다. 자기부상 차량용 차간 댐퍼는 곡선 진출입시 차량에 발생하는 요(Yaw) 방향의 진동을 최소화할 수 있어야 함과 동시에, 부상 전자석이 레일과 접촉이 없도록 해야 한다. 본 논문에서는 곡선주행에서의 차간 댐퍼의 승차감과 곡선추종성에의 영향을 분석하는데 목적이 있다. 이를 위하여 부상제어, 차량, 대차 및 궤도가 포함된 동역학 모델을 이용한 동특성 시뮬레이션이 수행된다. 시뮬레이션을 통하여 차간 댐퍼의 효과가 분석되고 시험 선로에서의 주행시험을 실시하여 해석 결과의 신뢰성에 대한 검증이 이루어졌다.

공압식 ABS의 제어 알고리즘에 관한 연구 (A Study on the Pneumatic ABS Control Algorithm)

  • 신지환;심우용;김문섭;황돈하;박도영;김용주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2561-2563
    • /
    • 2000
  • In this paper, a mathematical vehicle model, the braking force control parameters, the wheel control logic, and vehicle control strategy are presented, in order to analyze the dynamic characteristics of a vehicle equipped with ABS(Antilock Brake System). The full vehicle dynamics model is constructed with sprung mass, brake system, and wheels to verify control algorithms. The valve control algorithms are designed with the wheel accelerations and slip ratio take into consideration. Theses algorithms are applied to the front and rear wheels independently. Simulation is performed under the wet road condition at initial braking speed of 60 [km/h].

  • PDF

ROAD CROWN, TIRE, AND SUSPENSION EFFECTS ON VEHICLE STRAIGHT-AHEAD MOTION

  • LEE J-H.;LEE J. W.;SUNG I. C.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.183-190
    • /
    • 2005
  • During normal operating conditions, a motor vehicle is constantly subjected to a variety of forces, which can adversely affect its straight-ahead motion performance. These forces can originate both from external sources such as wind and road and from on-board sources such as tires, suspension, and chassis configuration. One of the effects of these disturbances is the phenomenon of vehicle lateral-drift during straight-ahead motion. This paper examines the effects of road crown, tires, and suspension on vehicle straight-ahead motion. The results of experimental studies into the effects of these on-board and external disturbances are extremely sensitive to small changes in test conditions and are therefore difficult to guarantee repeatability. This study was therefore conducted by means of computer simulation using a full vehicle model. The purpose of this paper is to gain further understanding of the straight-ahead maneuver from simulation results, some aspects of which may not be obtainable from experimental study. This paper also aims to clarify some of the disputable arguments on the theories of vehicle straight-ahead motion found in the literature. Tire residual aligning torque, road crown angle, scrub radius and caster angle in suspension geometry, were selected as the study variables. The effects of these variables on straight-ahead motion were evaluated from the straight-ahead motion simulation results during a 100m run in free control mode. Examination of vehicle behavior during straight-ahead motion under a fixed control mode was also carried out in order to evaluate the validity of several disputable arguments on vehicle pull theory, found in the literature. Finally, qualitative comparisons between the simulation results and the test results were made to support the validity of the simulation results.

3차원 다물체동역학 시뮬레이션 기반 자기부상열차와 3경간 연속교 동적상호작용 해석 (Dynamic Interaction Analysis of Maglev and 3 Span Continuous Guideway Based on 3 D Multibody Dynamic Simulation)

  • 한종부;김기정
    • 한국CDE학회논문집
    • /
    • 제21권4호
    • /
    • pp.409-416
    • /
    • 2016
  • This study aims to investigate dynamic interaction characteristics between Maglev train and 3 span continuous guideway. The integrated model including a 3D full vehicle model based on multibody dynamics, flexible guideway by a modal superposition method, and levitation electromagnets with the feedback controller is proposed. The proposed model was applied to the Incheon Airport Maglev Railway to analyze the dynamic response of the vehicle and guideway from the numerical simulation. Using field test data of air gap and guideway deflections, obtained from the Incheon Airport Maglev Railway, the analysis method is verified. From the results, it is confirmed that Maglev railway system are designed and constructed safely according to the design criteria.

외력과 부싱변형을 고려한 무질량 링크 모델 개발 (Development of the Massless Link Model including External Force and Bushing Deformation)

  • 손정현;최성태;김광석;유완석;이종년
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.163-170
    • /
    • 2001
  • In this paper, a massless link model transmitting external forces is developed to achieve the numerical efficiency in simulation of vehicle suspension systems. Forces acting on links are resolved and transmitted to attached points with a quasi-static assumption. Also, a theoretical derivation and computer implementation of a massless link with bushing elements are proposed. In the massless link with bushing elements, one end is connected to the adjacent body with bushings and the other end is connected with a spherical joint. The deformation of a massless link with bushing elements is theoretically determined by minimizing the potential energy function with quasi-static equilibrium assumption at each time step. Several simulations with a full vehicle model are carried out to compare the efficiency of the developed massless link component. From the results, it is concluded that the proposed approach can reduce the computational time considerably.

  • PDF

후륜 캠버각 변화가 차량 조종성능에 미치는 효과 분석 (Analysis of Vehicle Handling Performance due to Camber Angle Change of Rear Wheel)

  • 박성준;손정현
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.67-73
    • /
    • 2010
  • In this study, a camber angle generating mechanism for rear suspension is suggested. An experimental device is implemented and tested. A full vehicle model with camber angle generating device by using ADAMS/Car is modeled. Rear left wheel and rear right wheel have 5 different camber angles in the simulations, respectively. Step steer and pulse steer simulations are carried out for investigating the effects of vehicle handling performance due to camber angle control of rear suspension. According to the results, the camber angle of rear suspension affects the vehicle handling performance during both simulations. Therefore, when the vehicle makes the right turn or left turn, left and right wheel should have the proper orientation for improving the handling performance, respectively.

4륜 조향 무인 컨테이너 차량(AGV) 시스템의 동특성 분석 (Analysis of Dynamic Characteristics for Four-Wheel-Steering Automated Guided Vehicle(AGV) System)

  • 최재영;이영진;변성태;이권순;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.306-306
    • /
    • 2000
  • This paper analyze the dynamic characteristics of Automated Guided Vehicle(AGV) which is being developed as a part of automation in port through DADS, one of the multi-dynamic analysis program, Previous evaluation of a vehicle is carried out through the continuous driving test of a real vehicle, however this method raise the loss of finance and time. If it is possible to analyze the dynamic characteristics of vehicle before construction completely we can compensate the loss of money and time during constructing. AGV contained containers is very heavy and its center of gravity can be easily changed with the disturbance from road or cornering. It makes AGV unsatisfied, therefore we evaluate the handling characteristics and stability of the full vehicle model. This paper contribute to establish the foundation of the development of a new system like a AGV which have a special structure.

  • PDF

전륜 및 후륜 캠버각 변화에 따른 차량 조종성능 효과 분석 (Effects on Vehicle Handling Performance according to Camber Angle Change of Front and Rear Wheel)

  • 박성준;손정현
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.23-29
    • /
    • 2011
  • In this study, a camber angle generating mechanism for front and rear suspension is suggested. An experimental device is implemented and tested. A full vehicle model with camber angle generating device by using ADAMS/Car is modeled. Step steer simulations are carried out for investigating the effects of vehicle handling performance due to camber angle change of front and rear wheel. According to results, the camber angle of rear suspension affects the vehicle handling performance during both simulations. Therefore, when the vehicle makes the right turn or left turn, left and right wheel of front and rear suspension should have the proper orientation for improving the handling performance, respectively.

실차 측정 정보를 이용한 군용 차량의 다물체 동역학 모델링 및 검증 (Modeling and Verification of Multibody Dynamics Model of Military Vehicle Using Measured Data)

  • 류치영;장진석;유완석;조진우;강이석
    • 대한기계학회논문집A
    • /
    • 제38권11호
    • /
    • pp.1231-1237
    • /
    • 2014
  • 군용 차량의 경우 야지 주행에 대한 성능 시험이 필수적인데 실차 시험의 경우 비용과 시간에 의한 제약을 받게 되므로, 시뮬레이션을 통한 성능 분석이 효율적이다. 본 연구에서는 상용 다물체 해석프로그램인 MSC.ADAMS 를 이용하여 차량 모델을 개발한다. 타이어 수직 강성 시험을 수행하고 FTire 모델에 반영하여 타이어 모델을 생성한다. 댐퍼의 경우 비선형 특성 시험을 통해 얻은 결과를 반영하여 댐퍼를 모델링 하였으며, 겹판 스프링은 빔 요소 모델로 차량 모델을 구성한다. 단순 장애물 통과 시험 및 파형로 통과 시험을 수행하고 가속도 응답 및 휠 하중 응답 분석을 통해 차량 모델의 신뢰성을 검증하였다.

조종안정성 평가를 위한 경로제어모델 (A Path Control Model to Evaluation Handling Characteristic of Vehicles)

  • 탁태오;최재민
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.139-147
    • /
    • 2001
  • In this study a path control scheme of simulation models of various vehicles to evaluate their handling characteristic is developed. Based on the forward target method, path deviation error is estimated and the required steering effort to reduce the error is computed by Ziegler-Nichols PID control rule. Velocity control model is also included in the proposed path control scheme to achieve the desired velocity. The path control scheme is implemented on a full vehicle model to perform ISO test procedures, such as steady state cornering, lane change, and sinusoidal input, etc. Through the simulations of ISO test procedures and comparison with actual tests, effectiveness and validity of the path control model is demonstrated.

  • PDF