• Title/Summary/Keyword: Full-scale monitoring

Search Result 135, Processing Time 0.024 seconds

Develoment of high-sensitivity wireless strain sensor for structural health monitoring

  • Jo, Hongki;Park, Jong-Woong;Spencer, B.F. Jr.;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.477-496
    • /
    • 2013
  • Due to their cost-effectiveness and ease of installation, wireless smart sensors (WSS) have received considerable recent attention for structural health monitoring of civil infrastructure. Though various wireless smart sensor networks (WSSN) have been successfully implemented for full-scale structural health monitoring (SHM) applications, monitoring of low-level ambient strain still remains a challenging problem for WSS due to A/D converter (ADC) resolution, inherent circuit noise, and the need for automatic operation. In this paper, the design and validation of high-precision strain sensor board for the Imote2 WSS platform and its application to SHM of a cable-stayed bridge are presented. By accurate and automated balancing of the Wheatstone bridge, signal amplification of up to 2507-times can be obtained, while keeping signal mean close to the center of the ADC span, which allows utilization of the full span of the ADC. For better applicability to SHM for real-world structures, temperature compensation and shunt calibration are also implemented. Moreover, the sensor board has been designed to accommodate a friction-type magnet strain sensor, in addition to traditional foil-type strain gages, facilitating fast and easy deployment. The wireless strain sensor board performance is verified through both laboratory-scale tests and deployment on a full-scale cable-stayed bridge.

전기체 구조시험 설비 감시 시스템

  • Chae, Dong-Chul;Hwang, Gui-Chul;Song, Jae-Chang;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • Full-scale test facility is a huge system which is integrated by many subsystems. There are several critical elements in test facility system. Those elements may cause undesirably test article failure during testing. Therefore, test facility monitoring system which indicates the operating status of the critical elements is required for performing full-scale structural test. Selection of critical element and design of this monitoring system are explained in detail in this paper. The monitoring system developed are being applied to T-50 full-scale static test, will be expended for full-scale fatigue test in the near future.

  • PDF

Performance of Tall Buildings in Urban Zones: Lessons Learned from a Decade of Full-Scale Monitoring

  • Kijewski-Correa, T.;Kareem, A.;Guo, Y.L.;Bashor, R.;Weigand, T.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.179-192
    • /
    • 2013
  • The lack of systematic validation for the design process supporting tall buildings motivated the authors' research groups and their collaborators to found the Chicago Full-Scale Monitoring Program over a decade ago. This project has allowed the sustained in-situ observation of a collection of tall buildings now spanning worldwide. This paper overviews this program and the lessons learned in the process, ranging from appropriate technologies for response measurements to the factors influencing accurate prediction of dynamic properties all the way to how these properties then influence the prediction of response using wind tunnel testing and whether this response does indeed correlate with in-situ observations. Through this paper, these wide ranging subjects are addressed in a manner that demonstrates the importance of continued promotion and expansion of full-scale monitoring efforts and the ways in which these programs can provide true value-added to building owners and managers.

Numerical prediction analysis of propeller bearing force for full-scale hull-propeller-rudder system

  • Wang, Chao;Sun, Shuai;Li, Liang;Ye, Liyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • The hybrid grid was adopted and numerical prediction analysis of propeller unsteady bearing force considering free surface was performed for mode and full-scale KCS hull-propeller-rudder system by employing RANS method and VOF model. In order to obtain the propeller velocity under self-propulsion point, firstly, the numerical simulation for self-propulsion test of full-scale ship is carried out. The results show that the scale effect of velocity at self-propulsion point and wake fraction is obvious. Then, the transient two-phase flow calculations are performed for model and full-scale KCS hull-propeller-rudder systems. According to the monitoring data, it is found that the propeller unsteady bearing force is fluctuating periodically over time and full-scale propeller's time-average value is smaller than model-scale's. The frequency spectrum curves are also provided after fast Fourier transform. By analyzing the frequency spectrum data, it is easy to summarize that each component of the propeller bearing force have the same fluctuation frequency and the peak in BFP is maximum. What's more, each component of full-scale bearing force's fluctuation value is bigger than model-scale's except the bending moment coefficient about the Y-axis.

Identification of flutter derivatives from full-scale ambient vibration measurements of the Clifton Suspension Bridge

  • Nikitas, Nikolaos;Macdonald, John H.G.;Jakobsen, Jasna B.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.221-238
    • /
    • 2011
  • The estimated response of large-scale engineering structures to severe wind loads is prone to modelling uncertainties that can only ultimately be assessed by full-scale testing. To this end ambient vibration data from full-scale monitoring of the historic Clifton Suspension Bridge has been analysed using a combination of a frequency domain system identification method and a more elaborate stochastic identification technique. There is evidence of incipient coupling action between the first vertical and torsional modes in strong winds, providing unique full-scale data and making this an interesting case study. Flutter derivative estimation, which has rarely previously been attempted on full-scale data, was performed to provide deeper insight into the bridge aerodynamic behaviour, identifying trends towards flutter at higher wind speeds. It is shown that, as for other early suspension bridges with bluff cross-sections, single-degree-of-freedom flutter could potentially occur at wind speeds somewhat below requirements for modern designs. The analysis also demonstrates the viability of system identification techniques for extracting valuable results from full-scale data.

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.

Flexible smart sensor framework for autonomous structural health monitoring

  • Rice, Jennifer A.;Mechitov, Kirill;Sim, Sung-Han;Nagayama, Tomonori;Jang, Shinae;Kim, Robin;Spencer, Billie F. Jr.;Agha, Gul;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.423-438
    • /
    • 2010
  • Wireless smart sensors enable new approaches to improve structural health monitoring (SHM) practices through the use of distributed data processing. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While much of the technology associated with smart sensors has been available for nearly a decade, there have been limited numbers of fulls-cale implementations due to the lack of critical hardware and software elements. This research develops a flexible wireless smart sensor framework for full-scale, autonomous SHM that integrates the necessary software and hardware while addressing key implementation requirements. The Imote2 smart sensor platform is employed, providing the computation and communication resources that support demanding sensor network applications such as SHM of civil infrastructure. A multi-metric Imote2 sensor board with onboard signal processing specifically designed for SHM applications has been designed and validated. The framework software is based on a service-oriented architecture that is modular, reusable and extensible, thus allowing engineers to more readily realize the potential of smart sensor technology. Flexible network management software combines a sleep/wake cycle for enhanced power efficiency with threshold detection for triggering network wide operations such as synchronized sensing or decentralized modal analysis. The framework developed in this research has been validated on a full-scale a cable-stayed bridge in South Korea.

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

Real-time Water Quality Prediction for Evaluation of Influent Characteristics in a Full-scale Sewerage Treatment Plant (하수처리장 유입수의 특성평가를 위한 실시간 수질예측)

  • Kim, Youn-Kwon;Chae, Soo-Kwon;Han, In-Sun;Kim, Ju-Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.617-623
    • /
    • 2010
  • It is the most important subject to figure out characteristics of the wastewater inflows of sewerage treatment plant(STP) when situation models are applied to operation of the biological processes and in the automatic control based on ICA(Instrument, Control and Automation). For the purposes, real-time influent monitoring method has been applied by using on-line monitoring equipments for the process optimization in conventional STP. Since, the influent of STP is consist of complex components such as, COD, BOD, TN, $NH_4$-N, $NO_3$-N, TP and $PO_4$-P. MRA2(Microbial Respiration Analyzer 2), which is capable of real-time analyzing of wastewater characteristics is used to overcome the limitations and defects of conventional online monitoring equipments in this study. Rapidity, accuracy and stability of developed MRA2 are evaluated and compared with the results from on-line monitoring equipments for seven months after installation in Full-scale STP.

Structural Health Monitoring of short to medium span bridges in the United Kingdom

  • Brownjohn, James M.W.;Kripakaran, Prakash;Harvey, Bill;Kromanis, Rolands;Jones, Peter;Huseynov, Farhad
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.259-276
    • /
    • 2016
  • Historically the UK has been a pioneer and early adopter of experimental investigation techniques on new and operation structures, a technology that would now be descried as 'structural health monitoring' (SHM), yet few of these investigations have been enduring or carried out on the long span or tall structures that feature in flagship SHM applications in the Far East.