• Title/Summary/Keyword: Full-bridge cell

Search Result 70, Processing Time 0.029 seconds

Development of Octagonal Ring Load Cell Based on Strain Rings (스트레인 링 이론 기반의 팔각링 로드셀 개발)

  • Kim, Joong-Seon;Jo, Hyeong-Geun;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.97-103
    • /
    • 2018
  • Force is a crucial element to be measured in various industries, especially the machine tool industry. Mega units of force are required in fields such as the heavy and ship industries. Micro/nano units of force are required for microparticles. The detection of force generates a physical transformation due to the force imposed from the outside, atlrnd electrical voltage signals are obtained from the system. For the detection of force, an octagonal ring load cell based on circular ring theory is designed and produced. To design the octagonal strain ring, theoretical values with data from the ANSYS program are compared to determine the size of the octagonal strain ring. An octagonal strain ring of the chosen size is made with the SCM415 material. The strain gauges are attached to the octagonal strain ring, designed to construct a full Wheatstone bridge. The LabVIEW program is used to measure the data, and strain values are found. With the octagonal ring load cell completed in this way, experiments are conducted by imposing forces on the tangential axis and radial axis. Experiments are performed to verify if the octagonal ring load cell conducts measurements properly, and theoretical values are analyzed to find any differences. The data will later be used in further research to develop a machine-tool dynamometer.

Development of 3.0[kW]class Fuel Cell Power Conversion System (3[kW]급 연료전지용 전력변환장치의 개발)

  • Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.54-63
    • /
    • 2007
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage $380[V_{DC}]$ and a PWM inverter with LC filter to convent the DC voltage to single-phase $220[V_{AC}]$. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of 93-97[%]is obtained over the wide output voltage regulation ranges and load variations.

A Study of ultrasonic welding system design (초음파 용접 시스템 설립에 관한 연구)

  • Lee, In-Hyuk;Song, Sung-Geun;Lee, Sang-Hun;Park, Sung-Jun;Chun, Chang-Keun;Yun, Cheol-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.988-989
    • /
    • 2006
  • The ultrasonic welding is with features of high electric conductivity and hot conductivity when it is used in metallic bond, high electric conductivity and hot conductivity when it is used in various metallic bonds, excellent quality when it is used for advanced junction, easiness when it is used in various metallic bonds, being needless for the exhaustive material and being benefit for the environment. Currently the use of ultrasonic welding is increasing in the industrial fields such as the automobile battle, the refrigerator, the air conditioner, the battery and the solar cell junction. But the production ability is insufficient in our country and it is necessary to explore the core technology of the ultrasonic welding. In this paper, the output LC resonance filter and 35kHz squal wave onion occurrence Full Bridge plans was designed. The output examination of the ultrasonic oscillator and the ultrasonic welding examination were done. The method for getting more smooth result in the ultrasonic welding machine system was researched.

  • PDF

Development of a Hybrid Power Generation System Using Photovoltaic Cells and Piezoelectric Materials (태양 전지와 압전 재료를 이용한 하이브리드 발전시스템 개발)

  • Kim, Yeongmin;Ahmed, Rahate;Zeeshan, Zeeshan;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.51-58
    • /
    • 2019
  • This paper deals with the operation of a hybrid power generation system made with photovoltaic cells and piezoelectric materials. The system can produce power from the wind as well as from the sun subject to their availability. Irrespective of the largeness of their power production, the power developed by both generators (i.e., phtovoltaic cells and piezoelectric cells) were combined and stored before it was applied to a load. Especially, the AC power (current) developed from each piezoelectric generator was converted by a full wave bridge rectifier and then combined prior to its storage in a capacitor. It was observed that the system can produce a maximum output power of 6.49 mW at loading resistance of $100{\Omega}$.

Non-contact Stress Measurement in Steel Member of PSC Box Bridge Using Raman Spectroscopy (라만 형광 분광법을 이용한 PSC 박스교 인장케이블 응력측정방법 연구)

  • Kim, Jongwoo;Kim, Namgyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.130-134
    • /
    • 2019
  • In this paper, a laser-based non-contact load cell is newly developed for measuring forces in prestressed concrete tendons. First, alumina particles have been sprayed onto an empty load cell which has no strain gauges on it, and the layer has been used as a passive stress sensor. Then, the spectral shifts in fluorescence spectroscopy have been measured using a laser-based spectroscopic system under various force levels, and it has been found that the relation of applied force and spectral shift is linear in a lab-scale test. To validate the field applicability of the customized load cell, a full-scale prestressed concrete specimen has been constructed in a yard. During the field test, it was, however, found that the coating surface has irregular stress distribution. Therefore, the location of a probe has to be fixed onto the customized load cell for using the coating layer as a passive stress sensor. So, a prototype customized load cell has been manufactured, which consists of a probe mount on its casing. Then, by performing lab-scale uniaxial compression tests with the prototype load cell, a linear relation between compression stress and spectrum shift at a specific point where laser light had been illuminated has been detected. Thus, it has a high possibility to use the prototype load cell as a force sensor of prestressed concrete tendons.

A Study on Power Conversion System for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환장치에 관한 연구)

  • Kim, Ju-Yong;Jung, Sang-Hwa;Mun, Sang-Pil;Ryu, Jae-Yup;Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.10-24
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V]. In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch $S_5\;and\;S_6$ in the secondary switch which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household

Highly Efficient and Stable Organic Photo-Sensitizers based on Triphenylamine with Multi-anchoring Chromophore for Dye-sensitized Solar Cells (트리페닐아민을 이용한 염료감응형 태양전지 고효율 염료합성)

  • Yang, Hyunsik;Jung, Daeyoung;Jung, Miran;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.1-88.1
    • /
    • 2010
  • Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for the Dye-sensitized Solar Cell (DSSC). The efficiency of DSSC based on metal-free organic dyes is known to be much lower than that of Ru dyes generally, but a high solar energy-to-electricity conversion efficiency of up to 8% in full sunlight has been achieved by Ito et al. using an indoline dye. This result suggests that smartly designed and synthesized metal-free organic dyes are also highly competitive candidates for photosensitizers of DSSCs with their advantages mentioned above. Recently, the performance of DSSC based on metal-free organic dyes has been remarkably improved by several groups. We had reported the novel organic dye with double electron acceptor chromophore, which was a new strategy to design an efficient photosensitizer for DSSC. To verify the strategy, we synthesized organic dyes whose geometries, electronic structures and optical properties were derived from preceding density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In this paper, we successfully synthesized the chromophore containing multi-acceptor push-pull system from triphenylamine with thiophene moieties as a bridge unit. Organic dyes with a single electron acceptor and double acceptor system were also synthesized for comparison purposes. The photovoltaic performances of these dyes were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were also measured in order to characterize the effects of the multi-anchoring groups on the open-circuit voltage and the short-circuit current. In order to match specifications required for practical applications to be implemented outdoors, light soaking and thermal stability tests of these DSSCs, performed under $100mWcm^{-2}$ and $60^{\circ}C$ for 1000h.

  • PDF

A Study on 6-pulse-shift Current-source PWM Inverter for Photovoltaic System (태양광발전을 위한 6-pulse-shift 전류형 인버터에 관한 연구)

  • Lim, Joung-Min;Lee, Sang-Hun;Park, Sung-Jun;Moon, Chae-Joo;Chang, Young-Hak;Lee, Man-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.193-200
    • /
    • 2006
  • This paper suggests a 6-pulse-shift converter structure with PWM current-source inverter based on buck-boost configuration to improve the efficiency and to reduce the switching frequency of inverter for photovoltaic generation system, the device can be operated as interface system between solar module system and power system grid without energy storage cell. The circuit has six current-source buck-boost converter which operate chopper part and kas one full bridge inverter which make a decision the polarity of AC output. Therefore, the proposed PWM power inverter has advantages such as the reduction of witching loss and realization of unity power factor operation. The theoretical backgrounds are discussed and the input-output characteristics for the implemented prototype inverter using TMS320F2812 are verified experimentally in this paper.

Crystal Structures of Vacuum Dehydrated Fully $Cd^{2+}$-Exchanged Zeolite A and of Its iodine Sorption Complex (카드뮴 이온으로 완전히 치환한 제올라이트 A를 진공 탈수한 구조와 이것에 요오드를 흡착한 결정구조)

  • Jang, Se-Bok;Han, Young-Wook;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.4 no.2
    • /
    • pp.54-62
    • /
    • 1993
  • The crystal shnture of dehydrated fully Cd2+-exchanged zeolite A evacuated at 2 × 10-6 Torr and 650℃ (a:12.189(2) A) and of its iodine sorption corrplex (a:12.168(2)A) have been netsmlmn by single uystal x-ray diffraction techliques in the cubic space group hkTn at 21(1)℃. The strutures were refined to final error indices, Ri:0.057 and R2 =0.063 with 186 reflections and Rl:0.082 and R2:0.085 with 181 reflections, respectively, for which 1>3σ(In both structure, six lie at two distinguished threefold axes of unit cell ten the crystal structure of an iodine sorption complex of Cd6-A four Cd2+ ions are recessed 0.69(1) A into the large cavity to complex each with from the (111) plane of 0(3), whereas two Cd2+ ions recessed 0.68(1) A into the sodalite unit Awximately 4.0 l3ions per nit cell are sorbed. Each bridge between a Cd2+ ion and 8-ring oxygens ((I-I-I)= 117(1) ˚ and 0(1)-I(1)-I(2)=172(1)). The near linear I-I-0 angle and its interatomic distance (I-0=3.57(3) A) are indicative of a weak charge transfer interacticn between the frarrework oxygen and iodine. The existence of In3 inside the large cavity indicates that the If ions and H ions may be produced by reaction of In vapor with water molecules which maybe associated with Cd2+ ions in partially dehydrated Cd6-A In3- ions may be produced by the combination of I- and I2.

  • PDF

Crystallographic Studies of Dehydrated Zeolite-X Reacting with Rubidium Vapor (루비듐 증기로 처리한 탈수한 제올라이트 X의 결정학적 연구)

  • Han, Young Wook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.116-121
    • /
    • 1993
  • A single crystla of zeolite $Na_{78}Rb_{28}-X$ (approximate composition) was prepared by exposing $Na_{92}-X$ at $350^{\circ}C$ to 0.1 Torr of rubidium vapor, and its structure was determined by single-crystal x-ray diffraction methods in the cubic space group, Fd3, ${\alpha}=25.045(4){\AA}$. The structure was refined to the final error indices $R_1=0.082$ and $R_2=0.084$ with 353 for which I>$3{\sigma}(I)$. Only about 28 of the 92 $Na^+$ ions per unit cell were reduced and only about 14 of the 28 $Na^0$ atoms produced were retained within the zeolite. A $Na_5{^{4+}}$ cluster is present within each sodalite cavity. It is a centered tetrahedron (like $CH_4$) with bond $length=2.80(2){\AA}$ and angle tetrahedral by symmetry, and shows the full symmetry of its site. $T_d$, at the center of the sodalite cavity. Each of the four terminal atoms of the $Na_5{^{4+}}$ cluster bond to three framework oxygens at $2.36(2){\AA}$. At the centers of some double 6-rings are sodium atoms which bridge linearly between $Na_5{^{4+}}$ clusters to form agglomerations such as short zig-zag chains $Na_5{^{4+}}$ clusters. Delocalized electrons, located primarily on the sodiums at centers of the sodalite and (likely) double-six-ring cavities, contribute to the stability of the clusters.

  • PDF