• Title/Summary/Keyword: Full vehicle model

Search Result 240, Processing Time 0.028 seconds

Development of a Finite Element Model for Frontal Crash Analysis of a Mid-Size Truck (중형 트럭의 정면 충돌 특성해석을 위한 유한요소 모델의 개발)

  • 홍창섭;오재윤;이대창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • This paper develops a finite element model for studying the crashworthiness analysis of a mid-size truck. A simulation for a truck frontal crash to a rigid barrier using the model is performed with PAM-CRASH installed in super computer SP2. Full vehicle model is composed of 86467 shell elements, 165 beam elements and 98 bar elements, and 86769 nodes. The model uses four material model such as elastic, elastic-plastic(steel), rigid and elastic-plastic(rubber) material model which are in PAM-CRASH. Frame and suspension system are modeled with 28774 shell elements and 31412 nodes. Cab is modeled with 34680 shell elements and 57 beam elements, and 36254 nodes. Bumper is modeled with 2262 shell elements, and 2508 nodes. Axle, steering shaft, etc are modeled using beam or bar elements. Mounting parts are modeled using rigid bodies. Bodies are interconnected using nodal constrains or joint options. To verify the developed model, frontal crash test with 30mph velocity to a rigid barrier is carried out. In the crash test, vehicle pulse at lower part of b-pillar is measured, and deformed shapes of frame and driver seat area are photographed. Those measured vehicle pulse and photographed pictures are compared those from the simulation to verify the developed finite element model.

  • PDF

A Development of Hardware-in-the Loop Simulation System For a Electric Power Steering System (전동식 동력 조향 장치 연구를 의한 HILS 시스템 개발)

  • Park, Dong-Jin;Yun, Seok-Chan;Han, Chang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2883-2890
    • /
    • 2000
  • In this study, a Hardware-In-The-Loop-Simulation(HILS) system for developing a Electric-Power-Steering(EPS) system is designed. To test a EPS by HILS system, a mathematical vehicle model with a steering system model has been constructed. This mathematical model has been constructed. This mathematical model has been downloaded to the Digital-Signal-Processor(DSP) board. To realize the lateral force acting on the front wheel in a real car. the steering wheel angle sensor and vehicle velocity have been used for input signal. The force sensor has been used for a feedback signal. The full vehicle states could by simulated by the HILS system. Consequently, the HILS system could by used to analyze control-parameters of a EPS that contributes to the maneuverability and stability of a vehicle. At the same time, the HILS system can evaluate the whole performance of the vehicle-steering system. Also the HILS system could do test could not be executed in real vehicle. The HILs system will useful for developing the control logic for the EPS system.

Optimum Design of Front Toe Angle Using Design of Experiment and Dynamic Simulation for Evaluation of Handling Performances (실험계획법을 이용한 전륜 토우각의 최적설계 및 조종 안정성능 평가 시뮬레이션)

  • 서권희;민한기;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.120-128
    • /
    • 2000
  • At the initial design stage of a new vehicle, the chassis layout has the most important influence on the overall vehicle performance. Most chassis designers have achieved the target performances by trial and error method as well as individual knowhow. Accordingly, a general procedure for determining the optimum location of suspension hard points with respect to the kinematic characteristics needs to be developed. In this paper, a method to optimize the toe angle in the double wishbone type front suspension of the four-wheel-drive vehicle is presented using the design of experiment, multibody dynamic simulation, and optimum design program. The handling performances of two full vehicle models having the initial and optimized toe angle are compared through the single lane change simulation. The sensitive design variables with respect to the kinematic characteristics are selected through the experimental design sensitivity analysis using the perturbation method. An object function is defined in terms of the toe angle among those kinematic characteristics. By the design of experiment and regression analysis, the regression model function of toe angle is obtained. The design variables which make the toe angle optimized ae extracted using the optimum design program DOT. The single lane change simulation and test of the full vehicle model are carried out to survey the handling performances of vehicle with toe angle optimized. The results of the single lane change simulation show that the optimized vehicle has the more improved understeer tendency than the initial vehicle.

  • PDF

A Throttle/Brake Control Law for Stop and Go Cruise Control System (정지/서행 순항 제어 시스템을 위한 쓰로틀/브레이크 제어기법)

  • Hong, Jin-Ho;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.641-646
    • /
    • 2000
  • This paper addresses a throttle/brake control law for stop and go cruise control systems which make the vehicle remain at a safe distance from a preceding vehicle according to the driver's preference, automatically slow down and come to a full stop behind a preceding vehicle. The uncertainties of vehicle model have been considered in the design of the control law. The effect of throttle/brake control has been investigated via simulations. The simulations were performed using a complete nonlinear vehicle model. The results indicate that the proposed throttle/brake control law can provide the stop and go cruise control system with a good distance tracking performance.

  • PDF

Roll Motion Control of a Passenger Vehicle Using Hybrid Control (하이브리드 제어 기법에 의한 승용 차량의 롤 제어)

  • Kim, Hyo-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.22-28
    • /
    • 2011
  • This paper presents an active roll motion control of a passenger vehicle. The roll controller is designed in the framework of $H_{\infty}$ control scheme based on the 3 DOF vehicle model taking into consideration parameter variations, which affect the roll dynamics, and unmodeled high frequency dynamics for robustness and performance. In order to investigate the feasibility of the active roll control system in a car, its performance is evaluated by simulation in a full vehicle model with nonlinear tire characteristics under various operating conditions. Finally, in order to enhance the performance in a transient region taking into account the limited bandwidth of the actuating module, a hybrid control strategy is presented.

Improving the Roll Stability of a Vehicle by H$_{\infty}$ Control (선회 조향시 강건 제어에 의한 롤 안정성 개선)

  • 김효준;양현석;박영필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.92-99
    • /
    • 2001
  • This paper presents a simulation study using a robust controller to improve the roll stability of a vehicle. The controller is designed in the framework of an output feedback H$_{\infty}$ control scheme based on the 3DOF linear vehicle model, solving the mixed-sensitivity problem to guarantee the robust stability and disturbance rejection with respect to parameter variations due to laden and running vehicle conditions. In order to investigate the feasibility of the active roll control system in a real car, its performance is evaluated by simulation in a 10DOF full vehicle model with actuator dynamics and tire characteristics.

  • PDF

Output feedback, decentralized controller design for an active suspension system using 7 DOF full car model (7 자유도 차량 모델과 출력 되먹임을 이용한 자동차 능동 현가장치 설계에 관한 연구)

  • 노태수;정길도;홍동표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.871-875
    • /
    • 1996
  • The Output feedback linear quadratic regulator control is applied to the design of active suspension system using 7 DOF full car model. The performance index reflects the vehicle vertical movement, pitch and roll motion, and minimization of suspension stroke displacements in the rattle space. The elements of gain matrix are approximately decoupled so that each suspension requires only local information to generate the control force. The simulation results indicates that the output feedback LQ controller is more effective than purely passive or full state feedback active LQ controllers in following the road profile at the low frequency range and suppressing the road disturbance at the high frequency ranges.

  • PDF

Research of Structural Safety Tolerance for Wheelchair Bus Rollover Characteristics (휠체어 탑승 개조버스의 구조안전성능 연구)

  • Shin, Jaeho;Han, Kyeonghee;Kim, Kyungjin;Yong, Geejoong;Kang, Byung Do
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.54-59
    • /
    • 2018
  • While the advanced trffic environment systems are developed recently, the traffic systems for transportation vulnerable are still under development and their social life are limited as well. In order to the secure their mobility rights, it had been required to set up the particular system for the traffic welfare. One of the significant items is the express bus operation for wheelchair users. Thus, the research of development and operation for express buses with wheelchair users was funded by the Korean government. Before the express bus development for wheelchair users based on the current bus model, this study set up the evaluation method for the bus rollover characteristics to ensure occupant safety using the finite element method. The partial bus model was developed corresponding to the full bus model response under rollover event and the evaluation method based on two model (full bus model and partial bus model) responses is planned to apply the model development of express bus modification for wheelchair users.

Vehicle Stop and Go Cruise Control using a Vehicle Trajectory Prediction Method (차량 궤적 예측기법을 이용한 차량 정지/서행 순항 제어)

  • 조상민;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.206-213
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method for application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary vehicle stop and go cruise control systems which makes the vehicle remain at a safe distance from a preceding vehicle according to the driver's preference, automatically slow down and come to a full stop behind a preceding vehicle.

Using an ABS Controller and Rear Wheel Controller for Stability Improvement of a Vehicle (ABS 제어 및 후륜조향 제어기를 이용한 차량 안정성 개선에 관한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lee, Jong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1125-1134
    • /
    • 2004
  • This paper presents a mathematical model which is about the dynamics of not only a two wheel steering vehicle but a four wheel steering vehicle. A sliding mode ABS control strategy and PID rear wheel control logic are developed to improve the brake and cornering performances, and enhance the stability during emergency maneuvers. The performances of the controllers are evaluated under the various driving road conditions and driving situations. The numerical study shows that the proposed full car model is sufficient to accurately predict the vehicle response. The proposed ABS controller reduces the stopping distance and increases the vehicle stability. The results also prove that the ABS controller can be employed to a four wheel steering vehicle and improves its performance. The four wheel steering vehicle with PID rear wheel controller shows increase of stability when a vehicle speed is high and sharp cornering maneuver when a vehicle speed is low compared to that of a two wheel steer vehicle.