• Title/Summary/Keyword: Full vehicle

Search Result 618, Processing Time 0.033 seconds

Who has to take legal responsibility for retailer brand foods, manufacturers or retailers?

  • Cho, Young-Sang
    • Journal of Distribution Science
    • /
    • v.9 no.2
    • /
    • pp.97-109
    • /
    • 2011
  • As a marketing vehicle to survive in intensified retailing competition, retailer brand development has been adopted by retailers in Korea. As evidence, the retailer brand share of a major retailer, Tesco Korea, has grown from 20% in 2007 to 22.8% in the first half of 2008. It means that retailers have provided more and more retailer brand foods for customers. With the growing accessibility to retailer brand foods, it would be expected that the number of retailer brand food claims will increase. Customers have increasingly exposed to a variety of marketing activities conducted by retailers. When buying the retailer brand foods, customers tend to be affected by marketing activities of retailers. Despite the fact that customers trust retailers and then, buy their brand foods, in case of food accidents caused by production process, customers have to seek compensation from a retailer brand supplier. Of course, a retailer tends to shift its responsibility to its suppliers. Accordingly, it is not easy for customers to solve food claims. The research, therefore, aims at exploring the relationship between the buying-decision processes of retailer brand customers and which side takes legal responsibility for food claims. To effectively achieve the research aim, the author adopted a quantitative and a qualitative research technique, in order to supplement the disadvantages of each method. Before field research, based on the developed research model, the author pre-tested questionnaire with 10 samples, amended, and handed out to 400 samples. Amongst them, 316 questionnaires are available. For a focus group interview, 9 participants were recruited, who are students, housewives, and full-time workers, aged from 20s to 40s. Through the focus group interview as well as the questionnaire results, it was found that most customers were influenced by a retailer or store image in a customer's mind, retailer reputation and promotional activities. Surprisingly, customers think that the name of a retailer is a more important factor than who produces retailer brand foods, even though many customers check a retailer brand supplier, when making a buying-decision. Rather than retailer brand suppliers, customers trust retailers. That is why they purchase retailer brands. Nevertheless, production-related food claims is not involved with retailers. In fact, it would be difficult for customers to distinguish whether a food claim is related to selling or manufacturing processes. Based on research results, from a customer perspective, the research suggests that the government should require retailers to take the whole responsibility for retailer brand food claims, preventing retailers from passing the buck to retailer brand suppliers. In case of food claims, in order for customers to easily get the compensation, it is necessary to reconsider the current system. If so, retailers have to fully get involved in retailer brand production stage, and further, the customer awareness of retailer brands will be improved than ever before. Retailers cannot help taking care of the whole processes of retailer brand development, because of responsibility. As a result, the process to seek compensation for food claims might become easier, and further, the protection of customer right might be improved.

  • PDF

Power Shift and Media Empowerment (언론의 정치권력화 - 재벌 정책 보도의 정권별 비교 연구)

  • Kim, Dong-Yule
    • Korean journal of communication and information
    • /
    • v.45
    • /
    • pp.296-340
    • /
    • 2009
  • The power of media has always been problematic in the countries of full press freedom. Originally, the media used to be an effective vehicle for communication within human beings. However, it exerts an overwhelming power toward human society. Through applying the well-known four dog models in terms of media function, this study attempts to examine how the press media in South Korea transformed themselves into another powerful independent organization or institution after regime shift in 1987. The whole editorials of four sampled newspapers were analyzed through frame analysis model. The ChosunIlbo, known as a conservative and pro-government paper, shows to take the role of supporting chaebol policies under Roh TaeWoo Administration. However, it criticizing sharply against the chaebol policies of Roh MooHyun Administration. The JoongangIlbo, known as a pro-chaebol paper, appears anti-government position through the entire four administrations in terms of chaebol policies. Particularly, it reveals hostile editorial coverage during the Roh MooHyun Administration. However, KyunghyangShinmun, currently known as a liberal paper, viewed somewhat complicated positions (see text in more detail) because of its ownership turbulence during the past twenty years. On the other hand, Hangyoreh, regarded as a progressive paper, keeps in supportive attitude consistently against the four sampled administrations as far as regulating each government policies for chaebols.

  • PDF

Seismic performance evaluation of middle-slab vibration damping rubber bearings in multi-layer tunnel through full-scale shaking table (실대형 진동대 시험을 통한 복층터널 중간 슬래브 진동 감쇠 고무받침 내진성능 평가)

  • Jang, Dongin;Park, Innjoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.337-346
    • /
    • 2020
  • Traffic jam and congestion in urban areas has caused the need to improve the utility of underground space. In response, research on underground structures is increasingly being conducted. Notably, a double-deck tunnel is one of the most widely used of all those underground structures. This double-deck tunnel is separated by the middle slab into the upper and lower roadways. Both vehicle load and earthquake load cause the middle slab to exhibit dynamic behavior. Earthquake-related response characteristics, in particular, are highly complex and difficult to interpret in a theoretical context, and thus experimental research is required. The aim of the present study is to assess the stability of a double-deck tunnel's middle slab of the Collapse Prevention Level and Seismic Category 1 with regard to the presence of vibration-damping Rubber Bearings. In vibration table tests, the ratio of similitude was set to 1/4. Linings and vibrating platforms were fixed during scaled model tests to represent the integrated behavior of the ground and the applied models. In doing so, it was possible to minimize relative behavior. The standard TBM cross-section for the virtual double-deck tunnel was selected as a test subject. The level of ground motion exerted on the bedrock was set to 0.154 g (artificial seismic wave, Collapse Prevention Level and Seismic Category 1). A seismic wave with the maximum acceleration of 0.154 g was applied to the vibration table input (bedrock) to analyze resultant amplification in the models. As a result, the seismic stability of the middle slab was evaluated and analyzed with respect to the presence of vibration-damping rubber bearings. It was confirmed that the presence of vibration-damping rubber bearings improved its earthquake acceleration damping performance by up to 40%.

Aerodynamic Characteristics of a Tube Train (튜브 트레인 공력특성 해석)

  • Kim, Tae-Kyung;Kim, Kyu-Hong;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.139-150
    • /
    • 2010
  • Recently, full-scale research about a passenger tube train system is being progressed as a next-generation transportation system in Korea in light of global green technology. The Korea Railroad Research Institute (KRRI) has commenced official research on the construction of a tube train system. In this paper, we studied various parameters of the tube train system such as the internal tube pressure, blockage ratio, and operating speed through computational analysis with a symmetric and elongated vehicle. This study was about the aerodynamic characteristics of a tube train that operated under standard atmospheric pressure (open field system, viz., ground) and in various internal tube environments (varying internal tube pressure, blockage ratio, and operating speed) with the same shape and operating speed. Under these conditions, the internal tube pressure was calculated when the energy efficiency had the same value as that of the open field train depending on various combinations of the operating speed and blockage ratio (the P-D relation). In addition, the dependence of the relation between the internal tube pressure and the blockage ratio (the P-${\beta}$ relation) was shown. Besides, the dependence of the relation between the total drag and the operating speed depending on various combinations of the blockage ratio and internal tube pressure (the D-V relation) was shown. Also, we compared the total (aerodynamic) drag of a train in the open field with the total drag of a train inside a tube. Then, we calculated the limit speed of the tube train, i.e., the maximum speed, for various internal tube pressures (the V-P relation) and the critical speed that leads to shock waves under various blockage ratios, which is related to the efficiency of the tube train (the critical V-${\beta}$ relation). Those results provide guidelines for the initial design and construction of a tube train system.

  • PDF

On the speaker's position estimation using TDOA algorithm in vehicle environments (자동차 환경에서 TDOA를 이용한 화자위치추정 방법)

  • Lee, Sang-Hun;Choi, Hong-Sub
    • Journal of Digital Contents Society
    • /
    • v.17 no.2
    • /
    • pp.71-79
    • /
    • 2016
  • This study is intended to compare the performances of sound source localization methods used for stable automobile control by improving voice recognition rate in automobile environment and suggest how to improve their performances. Generally, sound source location estimation methods employ the TDOA algorithm, and there are two ways for it; one is to use a cross correlation function in the time domain, and the other is GCC-PHAT calculated in the frequency domain. Among these ways, GCC-PHAT is known to have stronger characteristics against echo and noise than the cross correlation function. This study compared the performances of the two methods above in automobile environment full of echo and vibration noise and suggested the use of a median filter additionally. We found that median filter helps both estimation methods have good performances and variance values to be decreased. According to the experimental results, there is almost no difference in the two methods' performances in the experiment using voice; however, using the signal of a song, GCC-PHAT is 10% more excellent than the cross correlation function in terms of the recognition rate. Also, when the median filter was added, the cross correlation function's recognition rate could be improved up to 11%. And in regarding to variance values, both methods showed stable performances.

The Experimental Study on Transverse Field Joint Method of Precast Road Deck Slab of Double Deck Tunnel in Great Depth (대심도 복층터널 프리캐스트 중간슬래브의 횡방향 현장이음방식에 대한 실험연구)

  • Lee, Doo-Sung;Kim, Bo-Yeon;Bae, Chul-Gi;Hur, Jae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2017
  • The joints between precast PSC slabs of the intermediate road slab in double deck tunnel are inevitably generated in the road traffic vehicle traveling direction. Therefore, it is important to make the behavior of parts on the joint in one piece. The imtermediate road slab system of double deck tunnel in great depth proposed in this study will be constructed with precast PSC slab in order to minimize the construction period. And the joint connection between the precast slab has been developed in two methods: the 'Transverse tendon reinforcement method' and 'High strength bolts connection method'. Also, the experiments were performed for the full scale model in order to evaluate the performance of the intermediate road deck slab with two type joints systems, the structural stability was verified through the F.E.M analsysis. The results of static loading test and F.E.M analysis investigated a very stable behavior of intermediate road deck slab in double deck tunnel applying the joint methods developed in this study, in the cracks and deflections to satisfy the design standards of Highway Roads Bridges (2011), it was determined that there is no problem even servicebility.

The Need for Weight Optimization by Design of Rolling Stock Vehicles

  • Ainoussa, Amar
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.124-126
    • /
    • 2009
  • Energy savings can be achieved with optimum energy consumptions, brake energy regeneration, efficient energy storage (onboard, line side), and primarily with light weight vehicles. Over the last few years, the rolling stock industry has experienced a marked increase in eco-awareness and needs for lower life cycle energy consumption costs. For rolling stock vehicle designers and engineers, weight has always been a critical design parameter. It is often specified directly or indirectly as contractual requirements. These requirements are usually expressed in terms of specified axle load limits, braking deceleration levels and/or demands for optimum energy consumptions. The contractual requirements for lower weights are becoming increasingly more stringent. Light weight vehicles with optimized strength to weight ratios are achievable through proven design processes. The primary driving processes consist of: $\bullet$ material selection to best contribute to the intended functionality and performance $\bullet$ design and design optimization to secure the intended functionality and performance $\bullet$ weight control processes to deliver the intended functionality and performance Aluminium has become the material of choice for modern light weight bodyshells. Steel sub-structures and in particular high strength steels are also used where high strength - high elongation characteristics out way the use of aluminium. With the improved characteristics and responses of composites against tire and smoke, small and large composite materials made components are also found in greater quantities in today's railway vehicles. Full scale hybrid composite rolling stock vehicles are being developed and tested. While an "overdesigned" bodyshell may be deemed as acceptable from a structural point of view, it can, in reality, be a weight saving missed opportunity. The conventional pass/fail structural criteria and existing passenger payload definitions promote conservative designs but they do not necessarily imply optimum lightweight designs. The weight to strength design optimization should be a fundamental design driving factor rather than a feeble post design activity. It should be more than a belated attempt to mitigate against contractual weight penalties. The weight control process must be rigorous, responsible, with achievable goals and above all must be integral to the design process. It should not be a mere tabulation of weights for the sole-purpose of predicting the axle loads and wheel balances compliance. The present paper explores and discusses the topics quoted above with a view to strengthen the recommendations and needs for the weight optimization by design approach as a pro-active design activity for the rolling stock industry at large.

  • PDF

A Study on the Durability Performance of a Receptacle for CNG Vehicles (천연가스 차량용 리셉터클의 내구성능에 관한 연구)

  • Choi, Young;Kim, Young-Min;Lee, Yong-Gyu;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.15-20
    • /
    • 2010
  • Compressed Natural Gas (CNG) buses have been supplied since the year 2000 in order to resolve severe atmospheric pollution in metropolitan area and contributed on the improvement of urban atmospheric environment. However, it is indispensible to take an adequate measure to guarantee the safety of CNG vehicles because of the possibility of huge fire accident. A receptacle, connecting device between high pressure fuel supply tank and fuel line, plays an important role in CNG supply system. In recent, leakage of CNG from receptacles has been reported. So, the concern about the security and reliability of receptacles has been arisen. Therefore, a lot of efforts to prevent leakage are invested among researchers and the durability of this component should be guaranteed despite repeated operation. This research has performed durability tests of a CNG receptacle regarding the repeated usage, extreme chattering, and continuous full flow test. Although a receptacle used for CNG vehicle satisfies validation requirements in the test results, it has been found that failure in the function of leakage prevention in a receptacle could take place in the case of prolonged exposure to high supply pressure in common quick charging environment on site.

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.