• Title/Summary/Keyword: Full states

Search Result 318, Processing Time 0.023 seconds

Phonon Scattering and Impact ionization for Silicon using Full Band Model at 77K (풀밴드 모델을 이용한 77K Si의 포논산란 및 임팩트이온화에 관한 연구)

  • 유창관;고석웅;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.552-554
    • /
    • 1999
  • Phonon scattering and impact ionization models have been presented to analyze hot carrier transport in high energy region, using full band model and Fermi's golden rule. We have investigated temperature dependent properties for impact ionization process of Si using realistic energy band structures at 77K and look. The realistic full band model, obtained from the empirical pseudopotential method with local from factors, is used to calculate scattering rate. The accurate calculation of impact ionization rate requires the use of a wavevector- and frequency-dependent dielectric function ξ ( q,$\omega$). The empirical phonon scattering rate P$\sub$ph/, is given by deriving from linear function for P$\sub$ph/ versus D(E) since the phonon scattering rate is linearly depended on density of states D(E). Impact ionization rate p,, is calculated from the first principle's theory. and fitted by modified Keldysh formula having power of above 2.

  • PDF

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

Full-Length Infectious Clones of Two New Isolates of Tomato Mosaic Virus Induce Distinct Symptoms Associated with Two Differential Amino Acid Residues in 128-kDa Protein

  • Choi, Go-Woon;Oh, June-Pyo;Cho, In-Sook;Ju, Hye-Kyoung;Hu, Wen-Xing;Kim, Boram;Seo, Eun-Young;Park, Jong-Seok;Domier, Leslie L;Hammond, John;Song, Kihak;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.538-542
    • /
    • 2019
  • In 2017, two new tomato mosaic virus (ToMV) isolates were collected from greenhouses in Buyeo, Chungcheongnam-do, South Korea. Full-length cDNAs of the new ToMV isolates were cloned into dual cauliflower mosaic virus 35S and T7 promoter-driven vectors, sequenced and their pathogenicities investigated. The nucleotide sequences of isolates GW1 (MH507165) and GW2 (MH507166) were 99% identical, resulting in only two amino acid differences in nonconserved region II and the helicase domain, Ile668Thr and Val834Ile. The two isolates were most closely related to a ToMV isolate from Taiwan (KJ207374). Isolate GW1 (Ile668, Val834) induced a systemic hypersensitive response in Nicotiana benthamiana compared with the isolate GW2, which a single residue substitution showed was due to Val834.

An objective assessment of the impact of tendon retraction on sleep efficiency in patients with full-thickness rotator cuff tears: a prospective cohort study

  • Ashley E. MacConnell;William Davis;Rebecca Burr;Andrew Schneider;Lara R Dugas;Cara Joyce;Dane H. Salazar;Nickolas G. Garbis
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.169-174
    • /
    • 2023
  • Background: Sleep quality, quantity, and efficiency have all been demonstrated to be adversely affected by rotator cuff pathology. Previous measures of assessing the impact of rotator cuff pathology on sleep have been largely subjective in nature. This study was undertaken to objectively analyze this relationship through the use of activity monitors. Methods: Patients with full-thickness rotator cuff tears at a single institution were prospectively enrolled between 2018 and 2020. Waist-worn accelerometers were provided for the patients to use each night for 14 days. Sleep efficiency was calculated using the ratio of the time spent sleeping to the total amount of time that was spent in bed. Retraction of the rotator cuff tear was classified using the Patte staging system. Results: This study included 36 patients: 18 with Patte stage 1 disease, 14 with Patte stage 2 disease, and 4 patients with Patte stage 3 disease. During the study, 25 participants wore the monitor on multiple nights, and ultimately their data was used for the analysis. No difference in the median sleep efficiency was appreciated amongst these groups (P>0.1), with each cohort of patients demonstrating a generally high sleep efficiency. Conclusions: The severity of retraction of the rotator cuff tear did not appear to correlate with changes in sleep efficiency for patients (P>0.1). These findings can better inform providers on how to counsel their patients who present with complaints of poor sleep in the setting of full-thickness rotator cuff tears.

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases (전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석)

  • Khim, Hoon;Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • $SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.

A Study of Competence-Competence in the United States (미국에서의 중재인의 권한판단권한(Competence-Competence)에 관한 고찰)

  • Kang, Soo-Mi
    • Journal of Arbitration Studies
    • /
    • v.22 no.2
    • /
    • pp.53-77
    • /
    • 2012
  • Competence-competence refers to an arbitratorpower to determine whether he or she has jurisdiction to decide a controversy. Although arbitrators power to rule on their own jurisdiction is generally recognized throughout the world, in the United States, neither the courts nor legislative bodies have recognized its significance or the reasoning behind its widespread adoption. Section 3 of the Federal Arbitration Act (FAA) is notorious among arbitration statues for its failure to incorporate competence-competence. When courts rule on an issue of competence-competence, it is referred to as a question of who decides the arbitrability of the case. In the United States, the use of competence-competence as a term of art is still limited to scholarly writings. The answer to the competence-competence inquiry is found in an interpretation of section 3 of the FAA which empowers the courts to decide arbitrability issues. The cases of the Supreme Court and most commentators interpreted sections 2 and 3 of the FAA as conferring issues of arbitrability on the federal courts, including the ability to rule on the validity and scope of the arbitral agreement. Traditionally, United States courts have denied the competence-competence to arbitral tribunal. Recently, however, they have confounded the rules by placing primary importance on the arbitration agreement between the parties. The Supreme Court, in a series of cases, has underscored the necessity of giving full effect to the intentions of the parties as expressed in their agreement to arbitrate. The result of the Supreme Court's emphasis on contractualism in determining the issue of arbitrability is most evident in the Courtdecision in the First Options case. Under First Options, courts are to decide arbitrability issues unless there is a clear and unmistakable contractual assignment of these issues to the tribunal itself. The Court is appraised that it has attempted to compromise between contractual freedom in the arbitration setting and the rule of law that is necessary in a society that depends on the concept of ordered liberty. In the decision in Howsam, the Court clarified the definition of arbitrability by attempting to draw a clear line between questions of arbitrability that are to be decided by courts and those matters that bear on the allocation of decisions between courts and arbitrators but are not questions of arbitrability.

  • PDF

Fault Detection of a Spacecraft's Reaction Wheels by Extended Unknown Input Observer (확장형 미지입력 관측기를 이용한 위성 반작용 휠의 고장 검출)

  • Jin, Jae-Hyun;Yong, Ki-Ryeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1138-1144
    • /
    • 2011
  • This article deals with the problem of fault detection of a spacecraft's actuators. The authors introduce an extended unknown input observer for nonlinear systems. This is an extended form of unknown input observers which are used for linear systems. Since faults are not available, those are considered as unknown inputs. Unknown input observers can estimate states without full information of inputs if some conditions are satisfied. The authors suggest a continuous-time extended UIO (eUIO) and prove the convergence of state estimation errors. Since the dynamic equation of a spacecraft is nonlinear, an extended UIO can be applied. Three eUIOs are designed to monitor three reaction wheels. The moving averages of each eUIO's residuals are selected for decision logic. The proposed method is verified by numerical simulations.

Practical (Second) Preimage Attacks on the TCS_SHA-3 Family of Cryptographic Hash Functions

  • Sekar, Gautham;Bhattacharya, Soumyadeep
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.310-321
    • /
    • 2016
  • TCS_SHA-3 is a family of four cryptographic hash functions that are covered by a United States patent (US 2009/0262925). The digest sizes are 224, 256, 384 and 512 bits. The hash functions use bijective functions in place of the standard compression functions. In this paper we describe first and second preimage attacks on the full hash functions. The second preimage attack requires negligible time and the first preimage attack requires $O(2^{36})$ time. In addition to these attacks, we also present a negligible time second preimage attack on a strengthened variant of the TCS_SHA-3. All the attacks have negligible memory requirements. To the best of our knowledge, there is no prior cryptanalysis of any member of the TCS_SHA-3 family in the literature.

A novel hybrid testing approach for piping systems of industrial plants

  • Bursi, Oreste S.;Abbiati, Giuseppe;Reza, Md S.
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1005-1030
    • /
    • 2014
  • The need for assessing dynamic response of typical industrial piping systems subjected to seismic loading motivated the authors to apply model reduction techniques to experimental dynamic substructuring. Initially, a better insight into the dynamic response of the emulated system was provided by means of the principal component analysis. The clear understanding of reduction basis requirements paved the way for the implementation of a number of model reduction techniques aimed at extending the applicability range of the hybrid testing technique beyond its traditional scope. Therefore, several hybrid simulations were performed on a typical full-scale industrial piping system endowed with a number of critical components, like elbows, Tee joints and bolted flange joints, ranging from operational to collapse limit states. Then, the favourable performance of the L-Stable Real-Time compatible time integrator and an effective delay compensation method were also checked throughout the testing campaign. Finally, several aspects of the piping performance were commented and conclusions drawn.

Development of Alternative Algorithms to the Decoupled Load Flow (Decoupled Load Flow 알고리즘에 대한 유용한 대안 알고리즘들의 개발)

  • Lee, Seung-Chul;Park, Sang-Soo;Park, Kyung-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1514-1519
    • /
    • 1999
  • This paper presents two flexible alternatives to the decoupled load flow(DCL) method. The proposed load flow methods can improve the convergence profiles of the DCL by reflecting in part the effects of the off-diagonal terms in the Jacobian at minimal costs. They can improve the convergence characteristics especially when the power system operating states deviate from the conditions required for stable convergence of the DCL and the P-Q coupling becomes significant. Two algorithms are obtained from the expression of the full Newton-Raphson load flow (NRL) method by successively diminishing the effects of the off-diagonal submatrices in the Jacobian. In the process of simplification, the Neuman series expansion is utilized. Test results show promising performances of the proposed algorithms in their convergence characteristics both in number of iterations and overall convergence speeds. Proposed algorithms are expected to provide flexible alternatives to the NRL when the DCL experiences convergence problems.

  • PDF