• Title/Summary/Keyword: Full scale experiment

Search Result 237, Processing Time 0.025 seconds

Full-scale experiments of cantilever traffic signal structures

  • Cruzado, Hector J.;Letchford, Chris
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.21-41
    • /
    • 2013
  • Wind-induced vibrations of mast arms of cantilever traffic signal structures can lead to fatigue failure. Two such structures were instrumented each with a sonic anemometer and a camera that records the motions of the tip of the arm. It was observed throughout this experiment that large amplitude vertical vibrations of mast arms with signals with backplates occur for the most part at low wind speed ranges, between 2 to 7 m/s, and as the wind speed increases the amplitude of the vertical vibrations decreases. The results of these experiments contradict the generally accepted belief that vortex shedding does not cause significant vibrations of mast arms that could lead to fatigue failure, which have been attributed to galloping in the past. Two damping devices were tested with mixed results.

Study on the Optimization of Slack Design in Sharp Curved Track (급곡선부에서 슬랙량 최적화를 위한 연구)

  • Kim Soon-Cheol;Kim Young-Gu;Jeon Byung-Chan;Han Jong-Moon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.823-829
    • /
    • 2005
  • The extent of slack is correlative with the wheelbase of vehicle as well as the distance between the inner faces of flanges. Since the movable clearance of wheel flange is getting reduced in curved track, the vehicle is more difficult to negotiate the track. By this reason, a certain extent of slack is normally designed for curved track to allow the movable clearance corresponding to that of straight track. In case of some foreign railways,. the fixed extent of slack has been classified by the ranges of curve radius. In case of KNR, the slack is calculated by a formula for each case of curve radius and it therefore seems quite precise method. However, since there is a wide range of slack adjustment $(S'=0\~15mm)$ in calculation formula itself, too excessive or too little slack can be calculated. This study is to approach the technical review on slack calculation and to offer the reasonable slack design through the full-scale experiment at sharp curved track without slack.

  • PDF

Nonlinear finite element analysis of Concrete Filled Carbon Tube Columns Using Plasticity Theory (축하중을 받는 콘크리트 충전 탄소섬유튜브 기둥의 소성 이론을 적용한 비선형 유한요소해석)

  • Kim, Heecheul;Seo, Sang Hoon;Lee, Young Hak
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.119-126
    • /
    • 2007
  • In the field of composite structures, the use of carbon tube for the confinement of concrete has been arisen since 1990's. However, experimental and analytical studies were limited to those of reinforced concrete and concrete filled steel tube. The carbon tube provides excellent confinement capabilities for concrete cores, enhancing compressive strength and ductility of concrete significantly. The carbon tube has high tensile strength, light weight, corrosion immunity and high fatigue strength properties. Since carbon fiber is an anisotropic material, carbon tube could be optimized by adjusting the fiber orientation, thickness and the number of different layers. In this study, both experimental and analytical studies of axial and lateral behavior of full-scale CFCT (Concrete Filled Carbon Tube) columns subjected to monotonic axial load were carried out using Drucker-Prager theory. And, based on comparison results between experiment results and analytical results, k factor estimation was proposed for effective analysis.

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

A Study on the Biosorption Process for Organic and Nutrient Removal from the Wastewater (생흡착을 이용한 하수의 유기물, 질소, 인제거에 관한 연구)

  • Kim, Hyun-Kab;Park, Ju-Seok;Chung, Hyung-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.470-479
    • /
    • 2004
  • The experimental conditions and relationships between parameters such as organic matter, aeration volume, aeration time, and precipitation time for the effective treatment of domestic wastewater were investigated. With the batch systems, the adsorption amount of unit microbe was measured with the change of MLSS concentration, precipitation time, and aeration amount. Theoretical adsorption amount of microbes was then numerically formulated by use of a SPSS multiple analysis as follows: $$Y=-0.0106(X_1)+0.07310(X_2)+42.705(X_3)+62.700$$ In this study, the amount of organisms to be removed in the range of MLSS concentration 2,000~4,500 mg/l were examined. In order to investigate the optimal condition of nitrification, the upper water in the biosorption stage was used as the initial experiment water. The results showed that the C/N ratio was 1.5 and the reaction time for the optimal nitrification was 1.5 hr. When the adsorption efficiency for microbe biosorption was 66%, the optimum denitrification efficiency was 83.3%. When the optimum parameters obtained from the batch experiment were applied to the lab-scale operation, the total retention time from the flow-in to flow-out was 10 hours and the removal efficiency was 93.8% for $COD_{cr}$ and 80.9% for TN. For the full-scale operation, the total retention time was 9.0 hours and the removal efficiency was 94.4% for BOD, 89.6% for $COD_{cr}$, 88.0% for TN, and 86.2% for TP.

Hetero-core Spliced Fiber Optical Sensing System for an Environment Monitoring (구조물 모니터링을 위한 헤테로 코어형 광센싱 시스템)

  • Kim, Young-Bok;Lee, Kwon-Soon;Watanabe, Kazuhiro;Sasaki, Hiroyuki;Choi, Yong-Woon
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.46-51
    • /
    • 2007
  • A multi-purpose environmental monitoring system has been developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensors, for the purposes of monitoring large-scale structures and preserving natural environments. The monitoring system has been tested and evaluated in a possible outdoor condition, in view of the full-scale operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended for monitoring such physical quantities as displacement, distortion, pressure, binary states, and liquid adhesion. Two channels of optical fiber line were monitored in each channel, three displacement sensor modules were connected in series, in order to examine the performance to a pseudo-cracking experiment in the outdoor situation and to clarify temperature influences an the system, in terms of the coupling of optical connectors and the OTDR stability. The results from the pseudo-cracking experiment agreed with the actual cracks, by means of calculation, based an the detected displacement values and their geometrical arrangement of the used sensor modules. The temperature change, ranging from 10 to $20^{\circ}C$ resulting from the 10-days free running operation, was found to influence the system stability of ${\pm}10{\mu}m$, primarily due to the coupling instability of the used optical connectors. It was found that fusion splicing, rather than the use of connectors, reduced the fluctuation dawn to ${\pm}2{\mu}m$. The specification and performance of various option modules have been demonstrated to show the capability of inspecting various physical quantities by use of the single system, which would be suitable for multi-purpose environmental monitoring.

Multi-parametric MRIs based assessment of Hepatocellular Carcinoma Differentiation with Multi-scale ResNet

  • Jia, Xibin;Xiao, Yujie;Yang, Dawei;Yang, Zhenghan;Lu, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5179-5196
    • /
    • 2019
  • To explore an effective non-invasion medical imaging diagnostics approach for hepatocellular carcinoma (HCC), we propose a method based on adopting the multiple technologies with the multi-parametric data fusion, transfer learning, and multi-scale deep feature extraction. Firstly, to make full use of complementary and enhancing the contribution of different modalities viz. multi-parametric MRI images in the lesion diagnosis, we propose a data-level fusion strategy. Secondly, based on the fusion data as the input, the multi-scale residual neural network with SPP (Spatial Pyramid Pooling) is utilized for the discriminative feature representation learning. Thirdly, to mitigate the impact of the lack of training samples, we do the pre-training of the proposed multi-scale residual neural network model on the natural image dataset and the fine-tuning with the chosen multi-parametric MRI images as complementary data. The comparative experiment results on the dataset from the clinical cases show that our proposed approach by employing the multiple strategies achieves the highest accuracy of 0.847±0.023 in the classification problem on the HCC differentiation. In the problem of discriminating the HCC lesion from the non-tumor area, we achieve a good performance with accuracy, sensitivity, specificity and AUC (area under the ROC curve) being 0.981±0.002, 0.981±0.002, 0.991±0.007 and 0.999±0.0008, respectively.

A Study of a Heat Flux Mapping Procedure to Overcome the Limitation of Heat Flux Gauges in Fire Tests (화재실험시 열유속 센서 사용의 단점을 보완한 Heat Flux Mapping Procedure에 관한 연구)

  • Choi, Keum-Ran
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.171-179
    • /
    • 2005
  • It is essential to understand the role of wall lining materials when they are exposed to a fire from an ignition source. Full-scale test methods permit an assessment of the performance of a wall lining material. Fire growth models have been developed due to the costly expense associated with full-scale testing. The models require heat flux maps from the ignition burner flame as input data. Work to date was impeded by a lack of detailed spatial characterization of the heat flux maps due to the use of limited instrumentation. To increase the power of fire modeling, accurate and detailed heat flux maps from the ignition burner are essential. High level spatial resolution for surface temperature can be provided from an infrared camera. The objective of this study was to develop a heat flux mapping procedure for a room test burner flame to a wall configuration with surface temperature information taken from an infrared camera. A prototype experiment was performed using the ISO 9705 test burner to demonstrate the developed heat flux mapping procedure. The results of the experiment allow the heat flux and spatial resolutions of the method to be determined and compared to the methods currently available.

The Study on the Fire Monitoring Dystem for Full-scale Surveillance and Video Tracking (전방위 감시와 영상추적이 가능한 화재감시시스템에 관한 연구)

  • Baek, Dong-hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.40-45
    • /
    • 2018
  • The omnidirectional surveillance camera uses the object detection algorithm to level the object by unit so that broadband surveillance can be performed using a fisheye lens and then, it was a field experiment with a system composed of an omnidirectional surveillance camera and a tracking (PTZ) camera. The omnidirectional surveillance camera accurately detects the moving object, displays the squarely, and tracks it in close cooperation with the tracking camera. In the field test of flame detection and temperature of the sensing camera, when the flame is detected during the auto scan, the detection camera stops and the temperature is displayed by moving the corresponding spot part to the central part of the screen. It is also possible to measure the distance of the flame from the distance of 1.5 km, which exceeds the standard of calorific value of 1 km 2,340 kcal. In the performance test of detecting the flame along the distance, it is possible to be 1.5 km in width exceeding $56cm{\times}90cm$ at a distance of 1km, and so it is also adaptable to forest fire. The system is expected to be very useful for safety such as prevention of intrinsic or surrounding fire and intrusion monitoring if it is installed in a petroleum gas storage facility or a storing place for oil in the future.

Structural Performance Evaluation of a Multi-span Greenhouse with Venlo-type Roof According to Bracing Installation (가새 설치에 따른 벤로형 지붕 연동온실의 구조성능 평가)

  • Shin, Hyun Ho;Choi, Man Kwon;Cho, Myeong Whan;Kim, Jin Hyun;Seo, Tae Cheol;Lee, Choung Kuen;Kim, Seung Yu
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.438-443
    • /
    • 2022
  • In this study, the lateral loading test was performed to analyze structural performance of multi-span plastic greenhouse through full-scale experiment and numerical analysis. In order to analyze the lateral stiffness and stress, we installed 9 displacement sensors and 19 strain gauge sensors on the specimen, respectively, and load of l mm per minute was applied until the specimen failure. In the comparison between the full-scale experiment and the structural analysis results of a multi-span greenhouse with venlo-type roof according to bracing installation, there was a large difference in the lateral stiffness of the structure. By installing a brace system, the lateral stiffness measured near the side elevation of the specimen increased by up 44%. As the bracing joint used in the field did not secure sufficient rigidity, the external force could not be transmitted to the entire structure properly. Therefore, it is necessary to establish a bracing construction method and design standards in order for a greenhouse to which bracing applied to have sufficient performance.