• Title/Summary/Keyword: Full ocean depth

Search Result 35, Processing Time 0.019 seconds

Statics variation analysis due to spatially moving of a full ocean depth autonomous underwater vehicle

  • Jiang, Yanqing;Li, Ye;Su, Yumin;Cao, Jian;Li, Yueming;Wang, Youkang;Sun, Yeyi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.448-461
    • /
    • 2019
  • Changes in gravity and buoyancy of a Full Ocean Depth Autonomous Underwater Vehicle (FOD-AUV) during its descending and ascending process must be considered very carefully compared with a Human Occupied Vehicle (HOV) or a Remotely Pperated Vehicle (ROV) whose activities rely on human decision. We firstly designed a two-step weight dropping pattern to achieve a high descending and ascending efficiency and a gravity-buoyancy balance at designed depth. The static equations showed that gravity acceleration, seawater density and displacement are three key aspects affecting the balance. Secondly, we try our best to analysis the gravity and buoyancy changing according to the previous known scientific information, such as anomaly of gravity acceleration, changing of seawater states. Finally, we drew conclusion that gravity changes little (no more than 0.1kgf, it is impossible to give a accurate value). A density-depth relationship at the Challenger Deep was acquired and the displacement changing of the FOD-AUV was calculated preciously.

The Estimation of Defect of Mono Cast Nylon by Infrared Thermography (열화상 기술에 의한 M.C 나일론의 내부 결함에 대한 평가)

  • Han, Jeong-Seb
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.81-86
    • /
    • 2009
  • Infrared thermography was used to determine the location, size, and depth of defects under the surface of M.C nylon. Defects were created in a specimen by back-drilling circular holes. These defects were located at the maximum temperature difference that occurred. The sizes of the defects could be calculated by means of the full width at half of the maximum temperature difference. The depth of a defect could be calculated by the peak time and the maximum temperature difference. The maximum temperature difference between a defect and normal part was decreased with the depth of the defect. And the peak time also slowly appeared with the depth of the defect.

Design of Truncated Mooring Line Model in KRISO's Deepwater Ocean Engineering Basin

  • Jung, Hyun-Woo;Kim, Yun-Ho;Cho, Seok-Kyu;Hwang, Sung-Chul;Sung, Hong-Gun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.227-238
    • /
    • 2015
  • The present work was an attempt to investigate the applicability of truncated mooring systems to KRISO's deep ocean engineering basin (DOEB) with ratios of 1:100, 1:60, and 1:50. The depth of the DOEB is 15 m. Therefore, the corresponding truncated depths for this study were equal to 1500 m, 900 m, and 750 m. The investigation focused on both the static and dynamic characteristics of the mooring system. It was shown, in a static pull-out test, that the restoring force of a FPSO vessel could be modified to a good level of agreement for all three truncation cases. However, when the radius of the mooring site was reduced according to the truncation factor, the surge motion response during a free-decay test showed a significant difference from the full-depth model. However, the reduction of this discrepancy was achieved by increasing the radius up to its maximum possible value while considering the size of the DOEB. Especially, in terms of the time period, the difference was reduced from 24.0 to 5.3 s for a truncation ratio of 1:100, 54.1 to 8.6 s for a truncation ratio of 1:60, and 31.7 to 3.9 s for a truncation ratio of 1:50. As a result, the study verified the applicability of the truncated mooring system to the DOEB, and therefore it could represent the full-depth mooring system relatively well in terms of the static and dynamic conditions.

An Analysis of Ice Impact Force Characteristics for the Arctic Structure Shape (극지 구조물 형상에 대한 빙충격 하중 특성 분석)

  • Jeong, Seong-Yeob;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.469-477
    • /
    • 2012
  • This paper describes the characteristic analysis of ice impact force for the Arctic structure shape. In the present study an energy method has been used to predict the impact force during the ice-structure collision. This study also employs two concepts for reference contact area and normalized stress in analysis procedure. The influences of factors, such as impact velocity, full penetration depth, structure shape and ice floe size, are investigated. Full penetration occurs, particularly at lower impact velocity when ice thickness increase. But "typical size" ice floe does not expected ever to achieve full penetration during the impact procedure. The structure shape is the dominant factor in ice impact force characteristic. The results for various ice-structure collision scenarios are analyzed.

쌍끌이 중층트롤어법의 연구 ( 2 ) - 모형어구의 깊이에 관하여 - ( A Study on the Pair Midwater Trawling ( 2 ) - Working Depth of the Model Net - )

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.45-53
    • /
    • 1995
  • Working depth of the model net was determined by using of the same experimental tank and the same model net that used in the forwarded report in a series studies. The depth of the net which indicates the depth of the head rope from the water surface, was determined by the photographs taken in front of the net mouth with the combination of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Working depth of model nets A and B was varied in the range of 0.09~1.66$m$,and 0.04~1.34$m$(which can be converted into 2.7~40.2$m$and 1.2~49.8$m$in the full-scale net) respectively, and the depth of model net A was slightly deeper than the depth of the model net B. 2. Working depth ($D$,which is appendixed m for the model net, f for the full-scale net, A and B for the types of the model nets) can be expressed as the function of towing velocity$V_t$, as in the model net($V_t$=$m$/$sec$) $D_{mA}$=(-1.99+0.65$L_w$) $e^{-1.72V_t}$ $D_{mA]$=(-1.91+1.04 $L_w$) $e^{2.88V_t}$ in the full-scale net($V_t$=$k$'$t$ $D_{fA}$=(-29.32+0.65$L_w$)$e^{0.40 V_t}$ $D_{fB}$=(-57.60+1.04$L_w$)$e^{-0.67 V_t}$ 3. Working depth 9$D$ appendixes are as same as the former) can be expressed as the function of warp length$L_w$) in the model net, and can be converted into full-scale net as in the model net ($V_t$=$m$/$sec$) $D_{mA}$=-0.99 $e^{-1.42V_t}$+0.67$e^{-1359V_t}$$L_w$ $D_{mB}$=-.258$e^{-3.77V_t}$+1.16$e^{-3.15V_t$ $L^w$, in the full-scale net($V_t$=k't) $D_{fA}$=-29.28$e^{-0.32V_t}$+0.67$e^{-0.37V_t$$L_w$ $D_{fB}$=-69.10$e^{-0.81V_t}$+1.16$e^{-0.72V_t}$$L_w$. 4. Working depth was gradually shallowed according to the increase of the distance between paired boats.

  • PDF

Study on Model Test Technique of Deepwater Moorings: A Hybrid Modeling of A OTEC Mooring System (심해계류 모형시험 기법 연구: OTEC 계류시스템의 혼합형 모델링)

  • Hong, Sup;Kim, Jin-Ha;Hong, Seok-Won;Hong, Sa-Young;Jalihal, Purnima
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.97-102
    • /
    • 2001
  • This paper describes an investigation how to carry out model tests of deepwater moorings exceeding the basin depth range. A hybrid mooring model, a combination of mooring lines scaled model and a couple of linear springs, is taken into account as an equivalent substitute of a full depth mooring system. Such an idea is applied to the model test of an OTEC mooring system to be installed in 1000m deep ocean. A 1/25 scaled model test of surface vessel and the upper part of mooring system is performed at ocean engineering basin. Possibility and limitation of the hybrid mooring modeling is discussed.

  • PDF

쌍끌이 중층트롤어업의 연구 ( IV ) ( a Study on the Midwater Pair Trawling ( IV )

  • Jang, Chung-Sik;Lee, Byeong-Gee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.7-15
    • /
    • 1996
  • Full scale experiment was carried out in the southern sea of Korea to compare some important factors tested in the model experiment. The results obtained can be summarized as follows ; 1. The changing aspect of mouth performance of the full scale net was almost coincided with the results obtained by the model experiment. The vertical opening(H) and the opening area(S) can be expressed as a function of the towing velocity(V) as H=48.78. $e^0.38V$(unit: m, k't) S= 1,443 .$e^-0.25V$(unit: $m^2V$, k't) 2. The changing aspect of working depth of the full scale net was almost coincided with the results obtained by the model experiment. The depth(D) can be expressed as a function of the towing velocity(V) and the warp length(L) as D=92.49.$V^1.37$(unit: m, k't, L= 150m) D= 12.07+0.32. L (unit: m, V=2k't) [)= - 7.90+0.22 . L (unit: m, V=3k't) 3. Some problems were found to operate A - type full scale net by common bottom pair trawlers. The problems can be summarized as follows; (1) Entangling of wing and square head ropes while net casting.(2) Man power needed and time spent for net hauling by common bottom trawlers increased considerably.( 3) Tearing of nettings caused by over -load of tension and entangling of net pendant while net hauling. To solve these problems, the trawlers are favorable to be equipped with variable pitch propeller and llet drum. While the net is favorable to be constructed with trifurcated net pendant in stead of quadrifurcated net pendant used at present.

  • PDF

Prediction of Maneuverability of a Submarine at Surface Condition by Captive Model Test (구속모형시험을 통한 잠수함 선형의 수상 조건 조종성능 추정 연구)

  • Chang-Seop, Kwon;Dong-Jin, Kim;Young-Yeon, Lee;Yeon-Gyu, Kim;Kunhang, Yun;Sungrok, Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.423-431
    • /
    • 2022
  • In this paper, the results of Planar Motion Mechanism (PMM) test for a 1/15 scaled model of the MARIN Joubert BB2 submarine is dealt with to derive the maneuvering coefficients for surface condition. For the depth of surface navigation, the top of the sail was exposed 0.46 m above the water surface in the model scale, and it corresponds to 6.9 m in the full scale. The resistance and self-propulsion tests were conducted, and the model's self-propulsion point was obtained for 1.328 m/s, which corresponded to 10 knots in the full scale. The maneuvering tests were performed at the model's self-propulsion point, and the maneuvering coefficients were obtained. Based on the maneuvering coefficients, a turning simulation was performed for starboard 30 degree of stern fins. The straight-line stability and control effectiveness in the horizontal plane were analyzed using the maneuvering coefficients and compared with the appropriate range. For the analysis of the neutral fin angle of the X-type stern fin, the stern fin test with drift angles was carried out. As a result, the flow straightening effect at lower and upper parts of the stern fin was discussed.

SPH Modeling of Surge Overflow over RCC Strengthened Levee

  • Li, Lin;Amini, Farshad;Rao, Xin;Tang, Hongwu
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.200-208
    • /
    • 2012
  • Surge overflow may cause damage on earthen levees. Levee strengthened on the levee crest and landward-side slope can provide protection against the erosion damage induced by surge overflow. In this paper, surge overflow of a roller compacted concrete RCC strengthened levee was studied in a purely Lagrangian and meshless approach, the smoothed particle hydrodynamics (SPH) method. After verifying the developed model with analytical solution and comparing the results with full-scale experimental data, the roughness and erosion parameters were calibrated. The water thickness, flow velocity, and erosion depth at crest, landward-side slope and toe were calculated. The characteristics of flow hydraulics and erosion on the RCC strengthened levee are given. The results indicate that the RCC strengthened levee can resist erosion damage for a long period.

A Benchmark Study of Design Codes on Offshore Pipeline Collapse for Ultra-Deepwater

  • Choi Han-Suk
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2006
  • The objective of this paper is to summarize current ultra-deepwater (i.e., up to 3,500 meters water depth) pipeline mechanical design methodologies as part of the limit state design. The standard mechanical design for ultra-deepwater pipelines in the Gulf of Mexico (GOM) is based on API RP 1111. API code also has been used for deepwater projects in west Africa. DNV code OS-F101 was mostly used for deepwater projects in offshore Brazil and Europe. Some pipeline designs in the GOM have started to incorporate parts of the DNV design methodology. A discussion of failure under collapse only and combined loading (i.e. pressure + bending) is presented. The best design criteria are obtained from physical full-scale collapse testing. The comparison of the physical test data and collapse calculations using the DNV and API codes will be presented. It was found that the conservatism still exists in the collapse prediction for ultra-deepwater pipeline using modem design codes such as DNV OS-F101 and API RP 1111.