• Title/Summary/Keyword: Full engine model

Search Result 87, Processing Time 0.025 seconds

Vibration Analysis of In-line Three Cylinder Engine with Balance Shaft Using DADS (DADS를 이용한 밸런스 샤프트 장착 직렬 3기통 엔진의 진동 해석)

  • 서권희;민한기;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.148-156
    • /
    • 2000
  • For the in-line three cylinder engine whose crankshaft has a phase of 120 degrees, the total sum of unbalanced inertia forces occurring in each cylinder will be counterbalanced among three cylinders. However, parts of inertia forces generated at the No.1 and No.3 cylinders will cause a primary moment about the No.2 cylinder. In order to eliminate this out-of-balance moment, a single balance shaft has been attached to the cylinder block so that the engine durability and riding comfort may be further improved. Accordingly, the forced vibration analysis of the in-line three cylinder engine must be implemented to meet the required targets at an early design stage. In this paper, a method to reduce noise and vibration in the 800cc, in-line three cylinder LPG engine is suggested using the multibody dynamic simulation. The static and dynamic balances of the in-line three cylinder engine are investigated analytically. The multibody dynamic model of the in-line three cylinder engine is developed where the inertia properties of connecting rod, crankshaft, and balance shaft are extracted from their FE-models. The combustion pressure within the No.1 cylinder in three significant operating conditions(1500rpm-full load, 4000rpm-full load and 7000rpm-no load)is measured from the actual tests to excite the engine. The vibration velocities at three engine mounts with and without balance shaft are evaluated through the forced vibration analysis. Obviously, it is shown that the vibration of the in-line three cylinder engine with balance shaft is reduced to the acceptable level .

  • PDF

Study on the Thermal Deformation Characteristics of the Automotive Diesel Engine Piston (자동차용 디젤엔진 피스톤의 열변형 특성에 관한 연구)

  • 이교승;이진호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.162-173
    • /
    • 1997
  • A 3-dimensional finite element model was developed for the analysis of the automotive diesel engine piston. The model, which consists of a full piston to accomodate the eccentric bowl in the piston crown, is used to calculate steady state operating temperature, thermal stress and thermal deformation of the piston. Roundness measurement tests, which are new approaches to the analysis of piston abrasion and deformation, were done for the comparision of two states of a piston-before and after operation. Numerical prediction shows good agreement with roundness measurement test results.

  • PDF

The Axial Vibration of Internal Combustion Engine Crankshaft (Part I.Calculation method of crankshaft axial stiffness and its natural frequencies) (내연기관크랭크축계 종진동에 관한 연구 (제1보: 크랭크축의 종진성계수와 종자유진동계산))

  • 전효중;김의관
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.34-51
    • /
    • 1981
  • Lately, due to increasing engine output by high supercharging, heavy crankshaft and propeller mass, as well as long strokes attended with the reduced crankshaft axial stiffness, the critical crankshaft axial vibration has frequently appeared in maneuvering range of the engine. Some investigators have developed calculating methods of natural frequencies and resonant amplitudes for crankshaft axial vibrations. But their reliabilities are uncertain as the estimated crankshaft axial stiffness are incorrect. The calculating procedure of these natural frequencies is practically analogous to the classical calculation of torsional vibration frequencies, except for an important difference due to the relationship of the axial stiffness of a crank and the angle between the crank and other, especially the adjacent, cranks. In this paper, 6 calculation formulae of crankshaft axial stiffness already published and a theoretically- developed one by authors are checked by comparing their calculating results with those measured values of one model crankshafat and three full-scale actual crankshafts. Also, the calculating methods of the crankshaft axial free vibration are investigated and their computer programs are developed. Finally, those developed computer programs are applied to calculating one model crankshaft and two full-scale actual crankshafts of ship's propulsion engines and their calculated results are compared with those measured values.

  • PDF

Performance Test of Turbopump Assembly for 75 Ton Liquid Rocket Engine Using Model Fluid (75톤급 액체로켓엔진용 터보펌프 조립체의 상사매질 성능시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • Performance test of a full-scale turbopump assembly for a 75 ton class liquid rocket engine was carried out at full speed. Model fluid was used as a working medium: liquid nitrogen for the oxidizer pump, water for the fuel pump, and hot air for the turbine. The turbopump was operated stably, satisfying the performance requirements. Head coefficient and flow coefficient of the pumps remained constant at the speed-increasing period. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test showed a good agreement with those from the turbopump component tests.

Performance Test of Turbopump Assembly for 75 Ton Liquid Rocket Engine Using Model Fluid (75톤급 액체로켓엔진용 터보펌프 조립체의 상사매질 성능시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.27-32
    • /
    • 2010
  • Performance test of a full-scale turbopump assembly for a 75 ton class liquid rocket engine was carried out at full speed. Model fluid was used as a working medium: liquid nitrogen for the oxidizer pump, water for the fuel pump, and hot air for the turbine. The turbopump was operated stably, satisfying the performance requirements. Head coefficient and flow coefficient of the pumps remained constant at the speed-increasing period. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test showed a good agreement with those from the turbopump component tests.

  • PDF

Different Approaches for Estimating the Full-scale Performance of a Ship based on 3-DOF Maneuvering Equations of Motion: Given Speed, RPM or Power (3자유도 조종운동방정식을 이용한 실선성능 추정 방법에 관한 연구: 속도, 분당회전수, 또는 엔진동력을 기준으로)

  • You, Youngjun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.427-438
    • /
    • 2019
  • It was important to estimate the full-scale operating performance including actual RPM and engine power of a ship since the operation efficiency during a voyage could be evaluated from the values. In the previous research, an entire voyage was simulated by following recorded speeds obtained from AIS and full-scale measurement data. Although reasonable tendencies were observed in the estimated speed, actual RPM, and engine power, it was impossible for them to be completely corresponded with the measured values due to the difference between actual operation and mathematical model. In this paper, alternative approaches to cope with the speed, actual RPM, and engine power were suggested by following the given speed, RPM, and power respectively. After entire voyages were simulated according to a given value, the effects of the value on the estimated performance were investigated. And, it was confirmed that the appropriate approach could be differently chosen according to the aim of the simulation or given value.

Vibration Control Performance of a Passenger Vehicle Featuring ER Engine Mounts (ER 엔진마운트를 장착한 승용차량의 진동제어 성능)

  • Song, Hyun-Jeong;Choi, Seung-Bok;Jeon, Young-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.481-486
    • /
    • 2000
  • This paper presents vibration control performance of a passenger vehicle installed with olectro-rheological(ER) engine mounts. As a first step, a mixed-mode ER engine mount is modeled and manufactured. After verifying the controllability of the dynamic stiffness by the intensity of the electric field, ER engine mounts are incorporated with a full-car model. The governing equation of motion is then formulated by considering engine excitation force. A skyhook controller to attenuate vibration motions is designed. The controller is implemented through hardware-in-the-loop simulation and control responses are presented in the both frequency and time domains.

  • PDF

Control Characteristics of ER engine mount considering Temperature Variation (온도 변화에 따른 ER 엔진마운트의 제어 특성)

  • Song, Hyun-Jeong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.180-183
    • /
    • 2005
  • The engine mount of vehicle systems is role of support engine mass and isolate noise and vibration from engine disturbance forces. One of attractive candidates to achieve this goai is to utilize a semi-active ER engine mount. By applying this, we can effectively control damping force and hence the noise and vibration by just controlling the intensity of electric field. However, control performance of the engine mount may be very sensitive to temperature variation during engine operation. In this work, we Investigate dynamic performances of ER engine mount with respect to the temperature variation. In order to undertake this, a flow-mode type of ER engine mount is designed and manufactured. Displacement transmissibility is experimentally and numerically evaluated as a function of the electric field. The ER engine mount is then incorporated with full-vehicle model in order to investigate vibration control performance. After formulating the governing equation of motion, a semi-active controller is designed. The controller is implemented through a hardware-in-the-loop simulation (HILS), and control responses such as acceleration level at various engine speeds are evaluated in the frequency and time domains.

  • PDF

COMPUTATIONAL INVESTIGATION OF NOZZLE FLOWFIELD IN A MICRO TURBOJET ENGINE AND ITS SCALING CHARACTERISTICS (마이크로 터보제트 엔진 노즐 유동장에 관한 CFD 전산해석 및 스케일링 특성 연구)

  • Lee, H.J.;An, C.H.;Myong, R.S.;Choi, S.M.;Kim, W.C.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Thermal flowfield of a micro turbojet engine was computationally investigated for exhaust nozzles with different aspect ratio and curvature. Special attention was paid to maximum and average temperature of the nozzle surface and the exhaust nozzle plume. The IR signatures of the micro turbojet engine nozzle were then calculated through the narrow-band model based on thermal flowfield data obtained through CFD analysis. Finally, in order to check the similarity of thermal flowfields and IR signature of the sub-scale micro turbojet engine model and the full-scale UCAV propulsion system, several non-dimensional parameters associated with temperature and optical property of plume were introduced. It was shown that, in spite of some differences in actual values of non-dimensional parameters, the scaling characteristics on spectral feature of IR signature and effects of aspect ratio and curvature of nozzle configuration remain similar in sub-scale and full-scale cases.

Design Methodology of Main Bearing Cap by a Finite Element Analysis (베어링 캡 유한 요소 해석 설계 방법)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • Main bearing cap is one of the essential structural elements in internal combustion engine. Main bearing cap guides and holds the crankshaft, withstanding the full combustion and inertia loads of the engine. A seamless design methodology using FEA has been proposed to produce a reliable design of main bearing cap. A Levy's thick cylinder model was applied to calculate the contact pressure between bearing shell and housing bore. A calculated contact pressure at housing bore is within the allowed limit comparing with that from bearing shell model. An adequate FEA model was suggested to obtain reliable solutions for the durability of main bearing cap. 3D global model consists of engine bulkhead, main bearing cap, and bolts. Sub-model consisting of cap and part of bolts is used to get detailed solution of main bearing cap. A very careful contact modeling practice is needed to resolve the convergence problems frequently encountering during combined geometric and material non-linear problems. A proposed methodology has been applied to the main bearing cap model successfully and obtained reliable stress results and fatigue safety factors.