• Title/Summary/Keyword: Full Load Performance

Search Result 438, Processing Time 0.022 seconds

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current rates, which provide a high power density. This requires wide range output voltage regulation for PSFB converter operation. In addition, the battery charger works with a light load when the battery charge voltage reaches its maximum value. The soft switching of the PSFB converter depends on the dead time optimization and load condition. As a result, the converter has to work with soft switching at a wide range output voltage and under light conditions to reach high efficiency. The operation principles of the PSFB converter for the continuous current mode (CCM) and the discontinuous current mode (DCM) are defined. The performance of the PSFB converter is analyzed in detail based on wide range output voltage and load conditions in terms of high efficiency. In order to validate performance analysis, a prototype is built with 42-54 V / 15 A output values at a 200 kHz switching frequency. The measured maximum efficiency values are obtained as 94.4% and 76.6% at full and at 2% load conditions, respectively.

Assessment of Structural Performance for a Lightweight Soundproof Tunnel Composed of Partitioned Pipe Truss Members (격벽화된 파이프 트러스 요소로 구성된 경량방음터널의 구조적 성능 평가)

  • Noh, Myung-Hyun;Ahn, Dong-Wook;Joo, Hyung-Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, the full-size structural performance test for a lightweight soundproof tunnel composed of partitioned pipe truss members is carried out to investigate the structural performance. In addition, a nonlinear structural analysis of the same finite element model as the full-size testing model is performed to compare the test result. The test and analysis results showed that the lightweight soundproof tunnel ensures the structural safety against wind loads, snow loads and load combinations. As a result, the full-size test and analysis results meet all the design load conditions, hence the proposed lightweight soundproof tunnel is ready for the field application.

Optimization of Seat belt Load Limiter for Crashworthiness (안전벨트 충돌하중특성 최적화)

  • Seo, bo pil;Choi, sung chul;Kim, beom jung;Han, sung jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • Under the full frontal crash event, seatbelt system is the most typical and primary restraint device that prevents the second impact between an occupant and vehicle interior parts by limiting the forward motion of an occupant in the vehicle occupant packaging space. Today's restraint systems typically include the three-point seat belt with the pretensioner and the load limiter. A pretensioner preemptively tightens the seat belts removing any slack between a passenger and belt webbing which leads to early restraint of a passenger. After that a load limiter controls level of belt load by releasing the belt webbing to reduce occupant injurys. In this study, load characteristics of load limiters are optimized by the computer simulation with a MADYMO model for a frontal impact against the rigid wall at 56kph and then we suggest performance requirements. We derived optimum load characteristic from the results using four vehicle simulation models represented by the vehicle. Based on the results, we suggest the performance from the results of the second optimization using the simulation considering the design and the standardization. Finally, the performance requirements is verified by the sled tests including the load limiter device for the full vehicle condition.

Fuzzy Controlled ZVS Asymmetrical PWM Full-bridge DC-DC Converter for Constant load High Power Applications

  • Marikkannan., A;Manikandan., B.V
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1235-1244
    • /
    • 2017
  • This paper proposes a fuzzy logic controlled new topology of high voltage gain zero voltage switching (ZVS) asymmetrical PWM full-bridge DC-DC boost converter for constant load and high power applications. The APWM full-bridge stage provides high voltage gain and soft-switching characteristics increase the efficiency and reduce the switching losses. Fuzzy logic controller (FLC) improves the performance and dynamic characteristics of the proposed converter. A comparison with a classical proportional-integral (PI) controller demonstrates the high performances of the proposed technique in terms of effective output voltage regulation under different operating conditions. Simulation is done by integrating two different simulation platforms $PSIM^{(R)}$ and $Matlab^{(R)}/Simulink^{(R)}$ by using SimCoupler tool of $PSIM^{(R)}$. Experimental results using 120W load have been provided to validate the results.

Traffic Generator for Performance Test of the TDX-10 Packet Handler (TDX-10 패킷처리기의 성능척정을 위한 트래픽발생기의 설계)

  • 정중수;전경표
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.411-417
    • /
    • 1995
  • Packet switching is an important aspect of ISDN. In the TDX-10 switching system, which is being developed as an ISDN exchange in Korea, the packet switching function is implemented on the basis of Case B scenario of X.31. After implementing the packet switching function the performance test must be executed to check whether the design objectives of performance are satisfied or not. However, it is not easy to set up test environment for performance measurement under full load conditions. This paper presents the design of the traffic generator which enables us to do performance test of the TDX-10 packet handler under full load conditions. To generate packet traffic we change only software programs without any change of the hardware system of the packet handler.

  • PDF

Part Load Performance Characteristics of Domestic Wood Pellet Boiler (가정용 목재 펠릿 보일러에 대한 부분부하 운전 특성)

  • Kang, Sae Byul;Kim, Jong Jin;Kim, Hyouck Ju;Park, Hwa Choon;Choi, Kyu Sung;Sim, Bong Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.103.1-103.1
    • /
    • 2010
  • Recently domestic wood pellet boilers are installed in rural and forestry houses. The fuel price per lower heating value of wood pellet is about 20 % lower than that of heating oil on July 2010. In spite of lower price of wood pellet, a few user of wood pellet boiler complain expensive fuel cost. One of this reason is inaccurate or improper air-fuel ratio setting of wood pellet boiler. O2 concentration of flue gas of domestic wood pellet boiler is about 9.7 % and there are few domestic wood pellet boiler which can control air-fuel ratio automatically. We tested a domestic wood pellet boiler in changing boiler thermal output and air-fuel ratio. The nominal boiler thermal output is 25 kW (21 500 kcal/h). We measured thermal efficiency and flue gas concentrations such as CO and NOx at each boiler thermal load with various air-fuel ratio. The results show that if air flow rate is the same as full load and part load, thermal efficiency of part load of 40 % drops about 7.7 %p compared to boiler full load case.

  • PDF

Use of UHPC slab for continuous composite steel-concrete girders

  • Sharif, Alfarabi M.;Assi, Nizar A.;Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.321-332
    • /
    • 2020
  • The loss of composite action at the hogging moment zone for a continuous composite girder reduces the girder stiffness and strength. This paper presents an experimental investigation of the use of an ultra-high performance concrete (UHPC) slab at the hogging moment zone and a normal concrete (NC) slab at the sagging moment zone. The testing was conducted to verify the level of loading at which composite action is maintained at the hogging moment zone. Four two-span continuous composite girders were tested. The thickness of the UHPC varied between a half and a full depth of slab. The degree of shear connection at the hogging moment zone varied between full and partial. The experimental results confirmed the effectiveness of the UHPC slab to enhance the girder stiffness and maintain the composite action at the hogging moment zone at a load level much higher than the upper service load limit. To a lesser degree enhanced performance was also noted for the smaller thickness of the UHPC slab and partial shear connection at the hogging moment zone. Plastic analysis was conducted to evaluate the ultimate capacity of the girder which yielded a conservative estimation. Finite element (FE) modeling evaluated the girder performance numerically and yielded satisfactory results. The results indicated that composite action at the hogging moment zone is maintained for the degree of shear connection taken as 50% of the full composite action and use of UHPC as half depth of slab thickness.

Flexural behaviors of full-scale prestressed high-performance concrete box girders

  • Gou, Hongye;Gu, Jie;Ran, Zhiwen;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.595-605
    • /
    • 2020
  • In this study, the flexural behaviors of full-scale prestressed concrete box girders are experimentally investigated. Four girders were fabricated using two types of concrete (compressive strengths: 50 MPa and 70 MPa) and tested under four-point bending until failure. The measured parameters included the deflection, the stress and strain in concrete and steel bars, and cracks in concrete. The measurement results were used to analyze the failure mode, load-bearing capacity, and deformability of each girder. A finite element model is established to simulate the flexural behaviors of the girders. The results show that the use of high-performance concrete and reasonable combination of prestressed tendons could improve the mechanical performance of the box girders, in terms of the crack resistance, load-carrying capacity, stress distribution, and ductility.

Effects of Form and Angle of Precombustion Chamber on Performance of Agricultural Diesel Engine (예연소실(豫燃燒室)의 형상(形狀)이 농용(農用) 디이젤엔진의 성능(性能)에 미치는 영향(影響))

  • Lee, Wook;Lee, Seung Kyu;Kim, Sung Tae
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.70-74
    • /
    • 1983
  • This study was conducted to determine whether or not the form and angle of the precombustion chamber affected the performance of agricultural diesel engines. Twenty different types of precombustion chambers were designed and tested using a two way classification with four individual tests. The output power and specific fuel consumption ratio at full load were measured and analyzed. The results of the study were summarized as follows; 1. The diameter of main passageway giving the best power output and specific fuel consumption ratio at full load was between 5.8 and 6.1mm. The ratio of area of main passageway bore to that of piston head was from 0.4 to 0.44 percent at the highest engine power. 2. The angle of main passageway giving the best power output and specific fuel consumption ratio at full load was between 41 and 43 degrees. 3. The change of the diameter of main passageway affected the output of engine more significantly than the change of angle, however, on the specific fuel consumption ratio the angle of main passageway had more effect than the diameter.

  • PDF

A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block

  • Joong-Won Lee;Kwang-Ho Choi
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.205-215
    • /
    • 2023
  • Currently, many studies are underway at home and abroad on the seismic performance evaluation and dry construction method of the masonry structure. In this study, a dry stack masonry wall system without mortar using concrete blocks is proposed, and investigate the seismic performance of dry filling wall frames through experimental studies. First, two types of standard blocks and key blocks were designed to assemble dry walls of concrete blocks. And then, three types of experiments were manufactured, including pure frame, 1/2 height filling wall frame, and full height filling wall frame, and cyclic load experiments in horizontal direction were performed to analyze crack patterns, load displacement history, rebar deformation yield, effective stiffness change, displacement ductility, and energy dissipation capacity. According to the experimental results, the full height filling wall frame had the largest horizontal resistance against the earthquake load and showed a high energy dissipation capacity. However, the 1/2 height filling wall frame requires attention because the filling wall constrains the effective span of the column, limiting the horizontal displacement of the frame. In addition, the concrete block was firmly assembled in the vertical direction of the wall as the horizontal movement between the concrete blocks was allowed within installation margin, and there was no dropping of the assembled concrete block.