• Title/Summary/Keyword: Fukushima Nuclear Accident

Search Result 225, Processing Time 0.021 seconds

Improved Coating Process for Enhanced Wear Resistance of CrAl Coated Claddings for Accident Tolerant Fuel (공정 개선에 따른 사고저항성 CrAl 코팅 피복관의 내마모성 향상)

  • Kim, Sung Eun;Lee, Young-Ho;Kim, Dae Ho;Kim, Hyun-Gil
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.136-142
    • /
    • 2022
  • This paper investigates the enhanced wear performance of a CrAl coated accident tolerant fuel (ATF) cladding. In the wake of the Fukushima accident, extensive research on ATF with respect to improving the oxidation resistance of cladding materials is ongoing. Since coated Zr claddings can be applied without major changes to the criteria for reactor core design, many researchers are studying coatings for claddings. To improve the quality of the CrAl coating layer, optimization of the manufacturing process is imperative. This study employs arc ion plating to obtain improved CrAl coated claddings using CrAl binary alloy targets through an improved coating method. Surface roughness and adhesion are improved, and droplets are reduced. Furthermore, the coated layer has a dense and fine microstructure. In scratch tests, all the tested CrAl coated claddings exhibit a superior resistance compared to the Zr cladding. In a fretting wear test, the wear volume of the CrAl coated claddings is smaller compared to the Zr cladding. Furthermore, the coated cladding manufactured through the improved process exhibits better wear resistance than other CrAl coated claddings. Based on these results, we suggest that fine microstructure is attributed to a mechanically and microstructurally robust CrAl coating layer, which enhances wear resistance.

Analysis of Korea's nuclear R&D priorities based on private Sector's domestic demand using AHP

  • Lee, Yunbaek;Son, Seungwook;Park, Heejun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2660-2666
    • /
    • 2020
  • Korea successfully achieved energy independence in the shortest period of time from being the poorest country in terms of energy 50 years ago through steady development of nuclear technology. In the past, the nuclear industry has been driven through government-centered policy development, public institution-based research, and industrial facility and infrastructure construction. Consequently, South Korea became a nuclear energy powerhouse exporting nuclear power plants to the UAE, surpassing the level of domestic technological independence. However, in recent years, the nuclear industry in Korea has experienced a decline in new plant construction since the Fukushima accident in Japan, which caused changes in public perspectives regarding nuclear power plant operation, more stringent safety standards on the operation of nuclear power plants, and a shift in governmental energy policy. These changes are expected to change the domestic nuclear industry ecosystem. Therefore, in this study, we investigate the priority of technology development investment from the perspective of experts in private nuclear power companies, shifting the focus from government-led nuclear R&D policies. To establish a direction in nuclear technology development, a survey was conducted by applying an analytic hierarchy analysis to experts who have worked in nuclear power plants for more than 15 years. The analysis items of focus were the 3 attributes of strategic importance, urgency, and business feasibility of four major fields related to nuclear energy: nuclear safety, decommissioning, radioactive waste management, and strengthening industrial competitiveness.

A Systems Engineering Approach for Predicting NPP Response under Steam Generator Tube Rupture Conditions using Machine Learning

  • Tran Canh Hai, Nguyen;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.94-107
    • /
    • 2022
  • Accidents prevention and mitigation is the highest priority of nuclear power plant (NPP) operation, particularly in the aftermath of the Fukushima Daiichi accident, which has reignited public anxieties and skepticism regarding nuclear energy usage. To deal with accident scenarios more effectively, operators must have ample and precise information about key safety parameters as well as their future trajectories. This work investigates the potential of machine learning in forecasting NPP response in real-time to provide an additional validation method and help reduce human error, especially in accident situations where operators are under a lot of stress. First, a base-case SGTR simulation is carried out by the best-estimate code RELAP5/MOD3.4 to confirm the validity of the model against results reported in the APR1400 Design Control Document (DCD). Then, uncertainty quantification is performed by coupling RELAP5/MOD3.4 and the statistical tool DAKOTA to generate a large enough dataset for the construction and training of neural-based machine learning (ML) models, namely LSTM, GRU, and hybrid CNN-LSTM. Finally, the accuracy and reliability of these models in forecasting system response are tested by their performance on fresh data. To facilitate and oversee the process of developing the ML models, a Systems Engineering (SE) methodology is used to ensure that the work is consistently in line with the originating mission statement and that the findings obtained at each subsequent phase are valid.

Big Data Analysis of Public Acceptance of Nuclear Power in Korea

  • Roh, Seungkook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.850-854
    • /
    • 2017
  • Public acceptance of nuclear power is important for the government, the major stakeholder of the industry, because consensus is required to drive actions. It is therefore no coincidence that the governments of nations operating nuclear reactors are endeavoring to enhance public acceptance of nuclear power, as better acceptance allows stable power generation and peaceful processing of nuclear wastes produced from nuclear reactors. Past research, however, has been limited to epistemological measurements using methods such as the Likert scale. In this research, we propose big data analysis as an attractive alternative and attempt to identify the attitudes of the public on nuclear power. Specifically, we used common big data analyses to analyze consumer opinions via SNS (Social Networking Services), using keyword analysis and opinion analysis. The keyword analysis identified the attitudes of the public toward nuclear power. The public felt positive toward nuclear power when Korea successfully exported nuclear reactors to the United Arab Emirates. With the Fukushima accident in 2011 and certain supplier scandals in 2012, however, the image of nuclear power was degraded and the negative image continues. It is recommended that the government focus on developing useful businesses and use cases of nuclear power in order to improve public acceptance.

KHNP-JIT Development for the Effective Use of Nuclear Power Plant Operating Experiences (원자력발전소 운전경험 활용 증진을 위한 KHNP-JIT 개발)

  • Hur, Nam Young;Lee, Sang Hoon;Kim, Je Hun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.31-34
    • /
    • 2013
  • According to the increase in numbers and operation time of domestic Nuclear Power Plants, KHNP(Korea Hydro & Nuclear Power) has many operating experiences. These show that most of the accidents repeatedly occurred not by the new sources or mechanism like the Fukushima Accident, but by the human and equipment errors from normal habits, process, design, maintenance etc.. These lessons show that the well-established systematic approach is requested to take lessons from past experiences. For this reason, developed countries established INPO, WANO, COG as a non-profit professional organizations to actively share their operating experiences. KHNP is also trying to promote the utilization of operating experiences. As part of this effort, KHNP is developing the KHNP-JIT, reflecting the overseas JIT and the domestic experiences.

Review Criteria for Reliability from Analysis of LOOP frequency in NPPs (소외전원상실사고 빈도수 분석을 통한 원전 신뢰도 검토기준)

  • Moon, Su-Cheol;Kim, Kern-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.300-305
    • /
    • 2013
  • LOOP(Loss of Offsite Power) and SBO(Station Blackout) events have been occurring in nuclear power plants should be reviewed and be controlled on important electrical equipments by professional engineer to prevent and to safety improvement from safety assessment and reliability analysis report. LOOP and SBO occasionally happened by internal or external causes. This paper contained that LOOP frequency in the United States NPPs and in the domestic NPPs have compared and analyzed data by the past lessons and probabilistic statistics. Additionally will be installed MG(Mobile Generator) according to the lessons of Fukushima nuclear accident in Japan, which CDF(Core Damage Frequency) and LOOP frequency have reconsidered. And this paper proposed to reduce reliability criteria using PSA(Probabilistic Safety Analysis).

Nordic research and development cooperation to strengthen nuclear reactor safety after the Fukushima accident

  • Linde, Christian;Andersson, Kasper G.;Magnusson, Sigurdur M.;Physant, Finn
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.647-653
    • /
    • 2019
  • A comprehensive study of photon interaction features has been made for some alloys containing Pd and Ag content to evaluate its possible use as alternative gamma radiations shielding material. The mass attenuation coefficient (${\mu}/{\rho}$) of the present alloys was measured at various photon energies between 81 keV - 1333 keV utilizing HPGe detector. The measured ${\mu}/{\rho}$ values were compared to those of theoretical and computational (MCNPX code) results. The results exhibited that the ${\mu}/{\rho}$ values of the studied alloys are in same line with results of WinXCOM software and MCNPX code results at all energies. Moreover, Pd75/Ag25 alloy sample has the maximum radiation protection efficiency (about 53% at 81 keV) and lowest half value layer, which shows that Pd75/Ag25 has superior gamma radiation shielding performance among the compared other alloys.

Sentiment analysis of nuclear energy-related articles and their comments on a portal site in Rep. of Korea in 2010-2019

  • Jeong, So Yun;Kim, Jae Wook;Kim, Young Seo;Joo, Han Young;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1013-1019
    • /
    • 2021
  • This paper reviewed the temporal changes in the public opinions on nuclear energy in Korea with a big data analysis of nuclear energy-related articles and their comments posted on the portal site NAVER. All articles that included at least one of "nuclear energy," "nuclear power plant (NPP)," "nuclear power phase-out," or "anti-nuclear" in their titles or main text were extracted from those posted on NAVER in January 2010-December 2019. First, we performed annual word frequency analysis to identify what words had appeared most frequently in the articles. For that period, the most frequent words were "NPP," "nuclear energy," and "energy." In addition, "safety" has remained in the upper ranks since the Fukushima NPP accident. Then, we performed sentiment analysis of the pre-processed articles. The sentiment analysis showed that positive-tone articles have been reported more frequently than negativetone over the entire analysis period. Last, we performed sentiment analysis of the comments on the articles to examine the public's intention regarding nuclear issues. The analysis showed that the number of negative comments to articles each month-irrespective of positive or negative tone-was always larger than that of positive comments over the entire analysis period.

Risk Management on Radiation Under Prolonged Exposure Situation - Focusing on the Tokyo Metropolitan Area in Japan Under the TEPCO Fukushima dai-ich NPP Accident -

  • Iimoto, Takeshi;Hayashi, Rumiko;Kuroda, Reiko;Furusawa, Mami;Umekage, Tadashi;Ohkubo, Yasushi;Takahashi, Hiroyuki;Nakamura, Takashi
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2012
  • Examples and experiences of risk management on radiation under prolonged exposure situation are shown. The accident of the Fukushima dai-ichi nuclear power plant after the great east Japan earthquake (11 March, 2011) elevates background level of environmental radiation around the east Japan. For example, ambient dose equivalent rate around Tohkatsu area next to Tokyo located about 200 km-south from the plant, is about 0.1-0.6 micro-Sv $h^{-1}$ mainly due to $^{134}Cs$ and $^{137}Cs$ falling on the ground soil. This level is about double or up to ten times higher than the genuine natural level around the area. International Commission on Radiological Protection (ICRP) recommends how to face the existing exposure situation; that is the prolonged exposure situation. Referring to ICRP's reports and/or related international/domestic documents, we have been discussing and acting to gain public's safety and relief, who have a possibility to be exposed to prolonged lower-dose radiation. Here, we introduce our several experiences on risk management, especially focusing on risk communication, radiation education to public, and stakeholder involvements into making decision in local governments on radiation protection, relating to the accident.

Risk Management on Radiation under Prolonged Exposure Situation - Focusing on the Tokyo Metropolitan Area in Japan Under the TEPCO Fukushima Dai-ich NPP Accident -

  • Iimoto, Takeshi;Hayashi, Rumiko;Kuroda, Reiko;Furusawa, Mami;Umekage, Tadashi;Ohkubo, Yasushi;Takahashi, Hiroyuki;Nakamura, Takashi
    • International Journal of Safety
    • /
    • v.10 no.2
    • /
    • pp.6-9
    • /
    • 2011
  • Examples and experiences of risk management on radiation under prolonged exposure situation are shown. The accident of the Fukushima dai-ichi nuclear power plant after the great east Japan earthquake (11 March, 2011) elevates background level of environmental radiation around the east Japan. For example, ambient dose equivalent rate around Tohkatsu area next to Tokyo located about 200 km-south from the plant, is about 0.1-0.6 micro-Sv $h^{-1}$ mainly due to $^{134}Cs$ and $^{137}Cs$ falling on the ground soil. This level is about double or up to ten times higher than the genuine natural level around the area. International Commission on Radiological Protection (ICRP) recommends how to face the existing exposure situation; that is the prolonged exposure situation. Referring to ICRP's reports and/or related international/domestic documents, we have been discussing how to manage this situation and acting to gain safety and relief of public, who have a possibility to be exposed to prolonged lower-dose radiation. Here, we introduce our several experiences on risk management, especially focusing on risk communication, radiation education to public, and stakeholder involvements into decision making in local governments on radiation protection, relating to the accident.

  • PDF