• Title/Summary/Keyword: Fukushima

Search Result 395, Processing Time 0.032 seconds

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

Nuclear Safety: A Longitudinal Case Study from the Fukushima Nuclear Disaster (후쿠시마 원전사고 종적사례연구를 통한 원전에너지 안전성 고찰)

  • Lee, Joon-Hyuk;Jin, Young-Min;Jo, Young-Hyuk;Lee, Soon-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.139-147
    • /
    • 2016
  • Nuclear energy is considerably cheap and clean compared to other fossil fuels. Yet, there are rising safety concerns of nuclear power plants including the possibility of radiation releasing nuclear accidents. In light of the Fukushima nuclear crisis in 2011, Japan has been re-evaluating their existing energy policies and increasing the share of alternative energy. This paper first tracks the major historical changes of energy policy in Japan by time period. Next, energy security, reignited concerns and alternative energy are covered to examine Japan's energy security situation and its transition after the Fukushima disaster. Lastly, a short survey based on thematic analysis was conducted in South Korea and Japan to understand the public awareness of nuclear. This paper postulates that the case of Fukushima will contribute to establish and operate a safe-future nuclear program in South Korea, given that the country is not only geographically neighbouring Japan but also the world's fourth largest producer of nuclear energy.

Multi-unit risk assessment of nuclear power plants: Current status and issues

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1199-1209
    • /
    • 2018
  • After the Fukushima-Daiichi accident in 2011, the multi-unit risk, i.e., the risk due to several nuclear power plants (NPPs) in a site has become an important issue in several countries such as Korea, Canada, and China. However, the multi-unit risk has been discussed for a long time in the nuclear community before the Fukushima-Daiichi nuclear accident occurred. The regulatory authorities around the world and the international organizations had proposed requirements or guidelines to reduce the multi-unit risk. The concerns regarding the multi-unit risk can be summarized in the following three questions: How much the accident of an NPP in a site affects the safety of other NPPs in the same site? What is the total risk of a site with many NPPs? Will the risk of the simultaneous accidents at several NPPs in a site such as the Fukushima Daiichi accident be low enough? The multi-unit risk assessment (MURA) in an integrated framework is a practical approach to obtain the answers for the above questions. Even though there were few studies to assess the multi-unit risk before the Fukushima-Daiichi nuclear accident, there are still several issues to be resolved to perform the complete MURA. This article aims to provide an overview of the multi-unit risk issues and its assessment. We discuss the several critical issues in the current MURA to get useful insights regarding the multi-unit risk with the current state art of probabilistic safety assessment (PSA) technologies. Also, the qualitative answers for the above questions are addressed.

Nuclear Accidents, Risk Communication, and Politics of Expertise: Centered on Fukushima Nuclear Accident (원전사고와 위험커뮤니케이션, 전문성의 정치: 후쿠시마 원전사고를 중심으로)

  • Kang, Yun-Jae
    • Journal of Engineering Education Research
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • This paper analyzes characteristics and discourses related with the risk communication of Fukushima nuclear disaster. I try to pick up and analyze the three strategies of Korean government's and expert system's risk communication, and then understand the relationship between them and the role of expert system in the risk communication and the politics of expertise.

Post-Fukushima challenges for the mitigation of severe accident consequences

  • Song, JinHo;An, SangMo;Kim, Taewoon;Ha, KwangSoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2511-2521
    • /
    • 2020
  • The Fukushima accident is characterized by the fact that three reactors at the same site experienced reactor vessel failure and the accident resulted in significant radiological release to the environment, which was about 1/10 of the Chernobyl releases. The safe removal of fuel debris in the reactor vessel and Primary Containment Vessel (PCV) and treatment of huge amount of contaminated water are the major issues for the decommissioning in coming decades. Discussions on the new researches efforts being carried out in the area of investigation of the end state of fuel debris and Boling Water reactor (BWR) specific core melt progression, development of technologies for the mitigation of radiological releases to comply with the strengthened safety requirement set after the Fukushima accident are discussed.

Radiation Dose Assessment Model for Terrestrial Flora and Fauna and Its Application to the Environment near Fukushima Accident

  • Keum, Dong-Kwon;Jeong, Hyojoon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.16-25
    • /
    • 2020
  • Background: To investigate radiological effects on biota, it is necessary to assess radiation dose for flora and fauna living in a terrestrial ecosystem. This paper presents a dynamic model to assess radioactivity concentration and radiation dose of terrestrial flora and fauna after a nuclear accident. Materials and Methods: Litter, organic soil, mineral soil, trees, wild crops, herbivores, omnivores, and carnivores are considered the major components of a terrestrial ecosystem. The model considers the physicochemical and biological processes of interception, weathering, decomposition of litter, percolation, root uptake, leaching, radioactive decay, and biological loss of animals. The predictive capability of the model was investigated by comparison of its predictions with field data for biota measured in the Fukushima forest area after the Fukushima nuclear accident. Results and Discussion: The predicted radioactive cesium inventories for trees agreed well with those for evergreens and deciduous trees sampled in the Fukushima area. The predicted temporal radioactivity concentrations for animals were within the range of the measured radioactivity concentrations of deer, wild boars, and black bears. The radiation dose for the animals were, for the whole simulation time, estimated to be much smaller than the lower limit (0.1 mGy·d-1) of the derived consideration reference level given by the International Commission on Radiological Protection for terrestrial flora and fauna. This suggested that the radiation effect of the accident on the biota in the Fukushima forest would be insignificant. Conclusion: The present dynamic model can be used effectively to investigate the radiological risk to terrestrial ecosystems following a nuclear accident.

General Workers Living with Younger Children in Fukushima Performed more Preventive Behavior against Radiation during and after the Nuclear Disaster

  • Kanda, Hideyuki;Sugaya, Nagisa;Takahashi, Kenzo;Mizushima, Shunsaku;Koyama, Kikuo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6893-6897
    • /
    • 2013
  • Background: During and after the Fukushima nuclear disaster (FND), many parents were concerned about the effects of radiation on the health of their children. Purpose: To clarify the factors that influenced general workers living with children and the effect of child age groups in implementing preventive behaviorsagainst radiation following the FND. Materials and Methods: A descriptive study of preventive behaviors among general workers was carried out 3-5 months after the nuclear disaster. The subjects were 1,394 regular workers, who took part in radiation seminars run by the Fukushima Occupational Health Promotion Center between July and September, 2011. In total, 1,217 responses were submitted, of which 1,110 were eligible for the present study. This anonymous questionnaire survey inquired about the presence and age of children in the household and about radiation preventive behavior implemented after the FND. The contribution of each variable was assessed by logistic regression analysis. Results: General workers in Fukushima who lived with younger children performed more preventive behavior against radiation during and after the FND. In particular, both location-related and daily routines were practiced significantly more frequently (p<0.01) by workers living with a child in the age ranges of 0-6 (8 of 10 items) and 7-12 (5 of 10 items). Conclusions: This is the first study to assess the positive association between living with children by age group and increased preventive behavior against radiation implemented by general workers after the FND.

Individual Doses to the Public after the Fukushima Nuclear Accident

  • Ishikawa, Tetsuo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.53-68
    • /
    • 2020
  • Background: International organizations such as the World Health Organization (WHO) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reported public exposure doses due to radionuclides released in the Fukushima nuclear accident a few years after the event. However, the reported doses were generally overestimated due to conservative assumptions such as a longer stay in deliberate areas designated for evacuation than the actual stay. After these reports had been published, more realistic dose values were reported by Japanese scientists. Materials and Methods: The present paper reviews those reports, including the most recently published articles; and summarizes estimated effective doses (external and internal) and issues related to their estimation. Results and Discussion: External dose estimation can be categorized as taking two approaches-estimation from ambient dose rate and peoples' behavior patterns-and measurements using personal dosimeters. The former approach was useful for estimating external doses in an early stage after the accident. The first 4-month doses were less than 2 mSv for most (94%) study subjects. Later on, individual doses came to be monitored by personal dosimeter measurements. On the basis of these measurements, the estimated median annual external dose was reported to be < 1 mSv in 2011 for 22 municipalities of Fukushima Prefecture. Internal dose estimation also can be categorized as taking two approaches: estimation from whole-body counting and estimation from monitoring of environmental samples such as radioactivity concentrations in food and drinking water. According to results by the former approach, committed effective dose due to 134Cs and 137Cs could be less than 0.1 mSv for most residents including those from evacuated areas. Conclusion: Realistic doses estimated by Japanese scientists indicated that the doses reported by WHO and UNSCEAR were generally overestimated. Average values for the first-year effective doses for residents in two affected areas (Namie Town and Iitate Village) were not likely to reach 10 mSv, the lower end of the doses estimated by WHO.