• 제목/요약/키워드: Fuel-Constraint

검색결과 64건 처리시간 0.021초

연계 계통에서의 환경적 배출량과 손실을 고려한 최적 경제급전 (Multi-Area Economic Dispatch Considering Environmental Emission and Transmission Losses)

  • 최승조;이상봉;김규호;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.341-343
    • /
    • 2000
  • Traditionally electric power system are operated in such a way that the total fuel cost is minimized regardless of accounting for tie-lines transmission constraint and emissions produced. But tie-lines transmission and emissions constraint are very important issues in the operation and planning of electric power system. This paper presents the Two-Phase Neural Network(TPNN) to solve the Economic Load Dispatch (ELD) problem with tie-lines transmission and emissions constraint considering transmission losses. The transmission losses are obtained from the B-coefficient which approximate the system losses as s quadratic function of the real power generation. By applying the proposed algorithm to the test system, the usefulness of this algorithm is verified.

  • PDF

대기환경오염물질의 배출량 제어를 위한 경제부하배분의 해석 (Analysis of Economic Load Dispatch for the Atmospheric Emission Control in Power Systems)

  • 김용하;정민화;송길영
    • 에너지공학
    • /
    • 제6권2호
    • /
    • pp.129-136
    • /
    • 1997
  • 본 연구는 전력계통의 화력발전소로부터 배출되는 NOx및 SO$_2$같은 대기환경오염물질을 고려한 새로운 경제부하배분법을 제시한다. 제안된 방법은 총배출량 제약, 지역별 배출랑 제약 그리고 이들의 동시제약을 만족하면서 화력발전기의 출력을 계획하는 것에 대해 설명되어진다. 또한, 모든 부하배분의 대체안이며 배출량과 총연료비 사이의 상호상충관계를 나타내는 Trade-Off곡선에 의해 배출량과 총연료비 사이의 감도해석이 이 알고리즘에 적용된다. 한편, 이 제안된 방법은 개별적 환경피해(NOx, SO$_2$등)의 상대적 가중치와 총환경비용의 함수로써 경제부하배분이 이것에 의해 어떻게 변화되는지를 해석한다. 본 연구에서 제안된 방법을 시험계통에 적용하여 그 유용성을 검증하였다.

  • PDF

호몰로지 설계를 이용한 원자로 핵연료봉 지지격자 스프링의 최적설계 (Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology)

  • 이재준;송기남;박경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.828-835
    • /
    • 2006
  • Spacer grid springs support the fuel rods in a nuclear fuel system. The spacer grid is a part of a fuel assembly. Since a spring has repeated contacts with the fuel rod, fretting wear occurs on the surface of the spring. Design is usually performed to reduce the wear. The conceptual design process for the spring is defined by using the Independence of axiomatic design and the design is carried out based on the direction that the design matrix indicates. For detailed design an optimization problem is formulated. In optimization, homologous design is employed to reduce fretting wear. The deformation of a structure is called homologous if a given geometrical relationship holds for a given number of structural points before, during, and after the deformation. In this case, the deformed shape of the spring should be the same as that of the fuel rod. 1bis condition is transformed to a function and considered as a constraint in the optimization process. The objective function is minimizing the maximum stress to allow a local plastic deformation. Optimization results show that the contact occurs in a wide range. Also, the results are verified by nonlinear finite element analysis.

  • PDF

Shape Optimization of the H-shape Spacer Grid Spring Structure

  • Yoon, Kyung-Ho;Kim, Hyung-Kyu;Kang, Heung-Seok;Song, Kee-Nam;Park, Ki-Jong
    • Nuclear Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.547-555
    • /
    • 2001
  • In pressurized light water reactor fuel assembly, spacer grids support nuclear fuel rods both laterally and vertically. The fuel rods are supported by spacer grid springs and grid dimples that are located in the grid cell. The support system allows for some thermal expansion and imbalance of the fuel rods. The imbalance is absorbed by elastic energy to prevent coolant flow- induced vibration damage. Design requirements are defined and a design process is established. The design process includes mathematical optimization as well as practical design method. The shape of the grid spring is designed to maintain its function during the lifetime of the fuel assembly. A structural optimization method is employed for the shape design. Since the optimization is carried out in the linear range of finite element analysis, the optimum solution is verified by nonlinear analysis. A good design is found and the final design is compared with the initial conceptual design. Commercial codes are utilized for structural analysis and optimization.

  • PDF

자동차 배출가스 규제를 위한 전생애평가 시스템 구축 (The Development of the Life Cycle Assessment Systems for the Constraint of the Motor Vehicle Emission)

  • 조재립;김경훈;김우식
    • 산업경영시스템학회지
    • /
    • 제20권43호
    • /
    • pp.365-379
    • /
    • 1997
  • Currently the problem of air pollution caused by the motor vehicle emission is of the most serious problems to be solved. Life Cycle Assessment is a process to evaluate the environmental burdens associated with a product or process by identifying and quantifying energy and materials used and wasters to the environment. This paper establishes a Life Cycle Assessment Systems which satisfies the criteria motor vehicle emission for the automobile producers who are currently producing the automobiles with catalytic convert. This plan also considered the constraint of the effective motor vehicle emission by way of the exhaust gas recirculation, electronic fuel injection, closed loop carburetor. In order to develope the performance of the LCA systems, the recent emissions test data have also been applied. The result of the development LCA systems has proved that the LCA plans presented in this paper satisfies the criteria motor vehicle emission and will be contributed to constrain the motor vehicle emission most effectively.

  • PDF

연료 균형을 고려한 인공위성 편대비행유지 최적 임펄스 제어 (Optimal Impulsive Maneuver for Satellite FormationKeeping with Fuel Balancing)

  • 목성훈;최윤혁;조동현;방효충
    • 한국항공우주학회지
    • /
    • 제38권2호
    • /
    • pp.141-149
    • /
    • 2010
  • 위성 편대 비행 시 주위성과 부위성 간의 연료 소비 균형을 고려한 임펄스 기동에 관한 연구를 수행하였다. 위성 간 사용가능한 연료량을 비교하여 가중치(weight)를 두고 가격함수(cost function)를 설계하여 라그랑지 승수법을 통해 필요한 임펄스를 획득하였다. 상대궤도 발산 방지를 위해 에너지 매칭 기법을 사용하였고, 임펄스 기동 후 상대 거리 구속이 이루어짐을 시뮬레이션을 통해 확인하였다. 시뮬레이션은 지구 중력 외의 외란이 없는 경우와 대기 항력이 외란으로 존재하는 상황으로 시나리오를 나누어 수행하였다. 본 논문 결과는 이후 실제로 위성을 편대로 사용한 위성 군집 비행 시, 상대 궤도 구속 요건을 만족하고 각 위성의 연료량을 비교한 임펄스 기동이 요구될 때 사용가능할 것으로 기대된다.

MIT PEBBLE BED REACTOR PROJECT

  • Kadak, Andrew C.
    • Nuclear Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.95-102
    • /
    • 2007
  • The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

An Algorithm for Robust Noninteracting Control of Ship Propulsion System

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.393-400
    • /
    • 2000
  • In this paper, a new algorithm for noninteracting control system design is proposed and applied to ship propulsion system control. For example, if a ship diesel engine is operated by consolidated control with controllable pitch propeller (CPP), the minimum fuel consumption is achieved satisfying the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption, and the both pitch angle of CPP and throttle valve angle are controlled simultaneously. In this context of view, this paper gives a controller design method for a ship propulsion system with CPP based on noninteracting control theory. Where, linear matrix inequality (LMI) approach is introduced for the control system design to satisfy the given $H_{\infty}$, constraint in the presence of physical parameter perturbation and disturbance input. To the end, the validity and applicability of this approach are illustrated by the simulation in the all operating ranges.

  • PDF

고분자 전해질 연료전지 시스템의 효율향상을 위한 공기공급 최적화 (Optimization of Air Supply for Increased Polymer Electrolyte Fuel Cell System Efficiency)

  • 주건엽;조기춘;선우명호;최서호
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.44-51
    • /
    • 2011
  • Polymer Electrolyte Fuel Cells (PEFCs) operate in wide-range changes in temperature, humidity, and electric current for automotive applications. In order to operate automotive PEFC efficiently, optimal air supply is required to adjust to these changes. This paper presents an air-supply optimization process that consists of experiments, modeling of the PEFC system, and optimization. The objective is to establish an air supply suitable for the required power for PEFC system and optimized with a Lagrange multiplier. Our simplified PEFC system model is used as a constraint for optimization problem. The result of this paper presents that efficient operation of PEFC system can be achieved by air-supply optimization.

지역별 CO2 배출량규제를 고려한 발전소 최적운전 알고리즘의 개발 (Development of algorism to optimal operation of Power Generation considering Regional Regulation of CO2 Emission)

  • 김용하;김영길;이평호;조현미;우성민
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.1936-1941
    • /
    • 2010
  • This purpose of this paper is to propose a methodology for optimal generating operation in power system to minimize the cost of generation subject to not only system constraints but also regional $CO_2$ emission constraints. To solve this ELD problem calculated range limit on minimum and maximum power outputs by regional Equal Generator how each regional capacity is connected into one and expressed Equal Fuel Cost Function considering regional $CO_2$ emission constraints. Accordingly, being modified regional load, new power outputs considering regional $CO_2$ emission constraints were calculated by ELD. The proposed model for evaluating availability is tested on IEEE RTS(Reliability Test System)-24 in detail.