DOI QR코드

DOI QR Code

Optimal Impulsive Maneuver for Satellite FormationKeeping with Fuel Balancing

연료 균형을 고려한 인공위성 편대비행유지 최적 임펄스 제어

  • 목성훈 (KAIST 항공우주공학전공 대학원) ;
  • 최윤혁 (KAIST 항공우주공학전공 대학원) ;
  • 조동현 (KAIST 인공위성연구센터) ;
  • 방효충 (KAIST 항공우주공학)
  • Received : 2009.10.27
  • Accepted : 2010.01.27
  • Published : 2010.02.01

Abstract

This paper contains impulsive maneuver which considers fuel consumption balance of chief satellite and deputy satellite in satellite formation flying. Thrust input is obtained by Lagrange' Multiplier method which is constructed by cost function with weight parameter of each satellite. Energy matching constraint is applied for boundedness of relative orbit, and theoretical solutions are verified by simulation results. Simulations are divided into two scenarios, with or without air-drag effect. This paper's results are expected to be used in real satellite formation flying, when fuel-balancing impulsive maneuver for relative orbit boundedness is needed.

위성 편대 비행 시 주위성과 부위성 간의 연료 소비 균형을 고려한 임펄스 기동에 관한 연구를 수행하였다. 위성 간 사용가능한 연료량을 비교하여 가중치(weight)를 두고 가격함수(cost function)를 설계하여 라그랑지 승수법을 통해 필요한 임펄스를 획득하였다. 상대궤도 발산 방지를 위해 에너지 매칭 기법을 사용하였고, 임펄스 기동 후 상대 거리 구속이 이루어짐을 시뮬레이션을 통해 확인하였다. 시뮬레이션은 지구 중력 외의 외란이 없는 경우와 대기 항력이 외란으로 존재하는 상황으로 시나리오를 나누어 수행하였다. 본 논문 결과는 이후 실제로 위성을 편대로 사용한 위성 군집 비행 시, 상대 궤도 구속 요건을 만족하고 각 위성의 연료량을 비교한 임펄스 기동이 요구될 때 사용가능할 것으로 기대된다.

Keywords

References

  1. Vadali, S. R., Vaddi, S. S., and Alfriend, K. T., "An Intelligent Control Concept for Formation Flying Satellites", International Journal of Robust and Nonlinear Control, Vol. 12, No. 2, 2002, pp.97-115. https://doi.org/10.1002/rnc.678
  2. Martin, M, Stallard, MJ., "Distributed Satellite Missions and Technologies - the TechSat-21 Program", AIAA Paper 99-4479, AIAA Space Technology Conference and Exposition, Albuquerque, NM, September 28-30.
  3. Folkner, WM., Bender, PL., Stebbinss, RT., "LISA Mission Concept Study: Laser Interferometer Space Antenna for the Detection and Observation of Gravitational Waves", Jet Propulsion Laboratory Report JPL 97-16, California Institute of Technology, Pasadena, CA, March 2, 1998.
  4. Luu, K., Martin, M., Stallard, M., Schlossberg, H., Mitola, J., Weidow, D., Blomquist, R., Campbell, M., Spence, H., and Twiggs, B., "University Nanosatellite Distributed Satellite Capabilities to Support TechSat23", AIAA/USU Small Satellite Conference, Reston, VA, August 23-26, 1999.
  5. Clohessy, W., and Wiltshire, R., "Terminal Guidance System for Satellite Rendezvous", Journal of the Astronaautical Sciences, Vol. 27, No. 9, 1960.
  6. Chris, S., Rich, B., and Craig, A. M., "Satellite Formation Flying Design and Evolution", Journal of Guidance, Control, and Dynamics, Vol. 38, No. 2, 2001, pp. 270-278.
  7. Pini, G., "Relative Motion Between Elliptic Orbits: Generalized Boundedness Conditions and Optimal Formationkeeping", Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 761-767. https://doi.org/10.2514/1.9439
  8. Cho, H., Park, S., "Analytic Solution for Fuel-Optimal Reconfiguration Relative Motion", Journal of Optimization Theory and Application, Vol. 141, No. 3, June, 2009, pp. 495-512. https://doi.org/10.1007/s10957-008-9482-3
  9. Kim, D., Woo, B., Park, S., and Choi, K., "Hybrid Optimization for Multiple-Impulse Reconfiguration Trajectories of Satellite Formation Flying", Advances in Space Research, Vol. 44, Issue 11, 1st December 2009, pp. 1257-1269 https://doi.org/10.1016/j.asr.2009.07.029
  10. Park, H., Park, S., and Choi, K., "The Reconfiguration and Formation-Keeping with State-Dependent Reccati Equation Nonlinear Controller", 18th AAS/AIAA Space Flight Mechanics Meeting, Jan. 28-31, 2008, Galveston, Texas, Paper AAS 08-214.
  11. Yoo, S., Park, S., and Choi, K., "A Fuel Balancing Method for Reconfiguration of Satellite Formation Flying", International Conference on Control, Automation and Systems 2007, Oct. 17-20, 2007, Seoul, Korea, pp. 1426-1429.
  12. Pini, G., and Kasdin, N. J., "Nonlinear Modeling of Spacecraft Relative Motion in the Configuration Space", Journal of Guidance, Control, and Dynamics, Vol. 27, No. 1, 2004, pp. 154-157. https://doi.org/10.2514/1.9343
  13. Schaub, H., "Incorporating Secular Drifts into the Orbit Elements Difference Description of Relative Orbits", American Astronautical Society/AIAA, AAS Paper 03-115, 2003.
  14. Nadia, A. S., M.N. Ismail, K.H.I. Khalil, "Decay of Orbits due to the Drag of Rotating Oblate Atmosphere", Planetary and Space Science, 2008, pp. 537-541.
  15. D. G. King-Hele, F.R.S., and Dorren M. C., Walker, "The Contraction of Satellite Orbits under the Influence of Air Drag. VII. Orbits of High Eccentricity, with Scale Height Dependent on Altitude", Royal Society(London), Proceedings, Series A - Mathematical and Physical Sciences, vol. 411, no. 1840, May 8, 1987, pp. 1-17. https://doi.org/10.1098/rspa.1987.0050
  16. Mishne, D., "Formation Control of Satellite Subject to Drav Variations and J2 Perturbations", Journal of Guidance, Control, and Dynamics, Vol. 27, No. 4, 2004, pp. 685-692. https://doi.org/10.2514/1.11156