• Title/Summary/Keyword: Fuel-C

Search Result 2,853, Processing Time 0.026 seconds

Application of Galvanic Oxidation and Pyrite Dissolution for Sustainable In-Situ Mine Tailings Treatment (갈바닉 산화와 황철석 용해를 이용한 친환경 원위치 광미 무해화 기술)

  • Ju, Won Jung;Jho, Eun Hea;Nam, Kyoungphile
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.279-284
    • /
    • 2016
  • Mine tailings generated during mining activity often contain high concentrations of heavy metals, with pyrite-containing mine tailings in particular being a major cause of environmental problems in mining areas. Chemical cell technology, or fuel cell technology, can be applied to leach heavy metals in pyrite-containing mine tailings. As pyrite dissolves through spontaneous oxidation (i.e. galvanic oxidation) in the anode compartment of the cell, $Fe^{3+}$, sulfuric acid are generated. A decrease in pH due to the generation of sulfuric acid allows heavy metals to be leached from pyrite-containing mine tailings. In this study, pyrite was dissolved for 4 weeks at $23^{\circ}C$ in an acidic solution (pH 2) and in a galvanic reactor, which induces galvanic oxidation, and total Fe leached from pyrite and pH were compared in order to investigate if galvanic oxidation can facilitate pyrite oxidation. The change in the pyrite surface was analyzed using a scanning electron microscope (SEM). Comparing the total Fe leached from the pyrite, there were 2.9 times more dissolution of pyrite in the galvanic reactor than in the acidic solution, and thus pH was lower in the galvanic reactor than in the acidic solution. Through SEM analysis of the pyrite that reacted in the galvanic reactor, linear-shaped cracks were observed on the surface of the pyrite. The study results show that pyrite dissolution was facilitated through the galvanic oxidation in the galvanic reactor, and also implied that the galvanic oxidation can be one remediation option for pyrite-containing mine tailings.

Influence of the Monitoring Interval and Intake Pattern for the Evaluation of Intake (내부피폭 감시주기 및 섭취형태가 방사성핵종 섭취량 평가에 미치는 영향)

  • Jong-Il Lee;Tae-Young Lee;Si-Young Chang;Jai-Ki Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.53-59
    • /
    • 2004
  • A variety of factors such as the pattern of intake (acute or chronic), monitoring interval and the characteristics of the radionuclides could have a significant influence on the estimates for the intake and internal dose. The relative differences of the assessed intakes based on the assumption of an acute intake to that of a chronic intake were evaluated by using the predicted bioassay quantity in the whole body or organs for an acute and chronic intake through the inhalation of $^{125}$ I, $^{137}$ C, $^{235}$ U with the AMAD of 1 ${\mu}{\textrm}{m}$ and 5 ${\mu}{\textrm}{m}$ for the monitoring intervals of 7, 14, 30, 60, 90, 120, 180, 360 days, respectively, The relative difference of the assessed intakes based on the intake pattern is affected by the monitoring interval, radionuclide and absorption type, but the particle size has little influence on the difference of the assessed intakes based on the intake pattern. The maximum monitoring interval, which is defined as the monitoring interval that the relative difference of the assessed intakes based on the assumption of an acute intake to that of a chronic intake is less than 10%, is 60 d for $^{125}$ I with Type F, 180 d for $^{137}$ C with Type F, 90 d for $^{235}$ U with Type M, and 360 d for $^{235}$ U with Type S. It was concluded that an intake pattern has little influence on the estimates of the assessed intake in the case where the monitoring interval is shorter than the maximum monitoring interval for each radionuclide.

  • PDF

A Study on the Clearance Level(draft) for the Steel Scrap from the KRR-1 & 2 Decommissioning (연구로 1,2호기 해체 철재폐기물의 규제해제농도기준(안) 도출을 위한 연구)

  • 홍상범;이봉재;정운수
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.60-67
    • /
    • 2004
  • The exposure dose form recycling of a large amount of the steel scrap from the KRR-1&2 decommissioning activities was evaluated, and also the clearance level(draft) was derived. The maximum individual dose and collective dose were evaluated by modifying internal dose conversion factor which was based on the concept of effective dose in ICRP 60, applied to the RESRAD-RECYCLE ver 3.06 computing code, IAEA Safety Series 111-P-1.1 and NUREG-1640 as the assessment tool. The result of assessment for individual dose and collective dose is 23.9 $\mu$Sv per year and 0.11 man$.$Sv per year respectively. The clearance levels were ultimately determined by extracting the most conservative value form the results of the generic assessment and specific assessment methodologies. The result of clearance level for radionuclides( $Co^{60}$ , C $s^{l37}$) is less than 1.14${\times}$10$^{-1}$ Bq/g to comply with the clearance criterion(maximum individual dose : 10 $\mu$Sv per year, collective dose : 1 man$.$Sv per year) provided for Korea Atomic Energy Act and relevant regulations.s.

  • PDF

Studies on the Electrochemical Dissolution for the Treatment of 10 g-Scale Zircaloy-4 Cladding Hull Wastes in LiCl-KCl Molten Salts (LiCl-KCl 용융염 내에서 10 g 규모의 Zircaloy-4 폐 피복관 처리를 위한 전기화학적 용해 연구)

  • Lee, You Lee;Lee, Chang Hwa;Jeon, Min Ku;Kang, Kweon Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.273-280
    • /
    • 2012
  • The electrochemical behaviors of 10 g-scale fresh and oxidized Zircaloy-4 cladding hulls were examined in $500^{\circ}C$ LiCl-KCl molten salts to confirm the feasibility of the electrorefining process for the treatment of hull wastes. In the results of measuring the potential-current response using a stainless steel basket filled with oxidized Zircaloy-4 hull specimens, the oxidation peak of Zr appears to be at -0.7 to -0.8 V vs. Ag/AgCl, which is similar to that of fresh Zircaloy-4 hulls, while the oxidation current is found to be much smaller than that of fresh Zircaloy-4 hulls. These results are congruent with the outcome of current-time curves at -0.78 V and of measuring the change in the average weight and thickness after the electrochemical dissolution process. Although the oxide layer on the surface affects the uniformity and rate of dissolution by decreasing the conductivity of Zircaloy-4 hulls, electrochemical dissolution is considered to occur owing to the defect of the surface and phase properties of the Zr oxide layer.

Biogas production using organic waste (유기성 폐기물을 이용한 바이오가스 생산)

  • Yoo, Eunsil;Hong, Soonhyouk;Kim, Daeyoung;Jun, Haks
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.110.2-110.2
    • /
    • 2011
  • 바이오가스 생산은 현재 정부에서 추진하고 있는 저탄소 녹색성장으로 인해 더욱 그 가치의 중요성이 부각되고 있다. 스웨덴 Scandinavian Biogas Fuel AB(SBF) 사의 바이오 가스 생산 기술을 이용함으로 소화효율을 개선하고 바이오가스 발생량을 극대화하였다. 전국 403개 공공하수처리시설 중 소화조가 설치된 처리시설은 65 개소이며 이중 57 개소에서 총 64개 소화조를 운영 중이다. 하지만 국내 소화조의 효율은 유입수질 저하, 운영, 관리 미숙으로 인해 전진국의 1/4 수준으로 에너지 이용률이 미미한 편이다. 환경부는 2010년부터 에너지 이용, 생산사용 확대, 추진을 위해 하수처리시설별 이용 가능한 에너지 잠재력의 종류, 양, 지역 내 수요자, 공급자 의 현황 규모 등을 정리해 2012년부터 에너지 이용사업 확대를 추진한다. SBF의 기술을 바탕으로 하수처리시설에서 들어오는 하루 슬러지 $1370m^3$와 음식물쓰레기 180t을 함께 처리하며 바이오가스 생산량을 더욱 늘렸다. 각 $7,000m^3$의 달걀모양(egg shape) 소화조 2개를 운영하며 생 슬러지와 음식물 쓰레기 처리 후 바로 소화조로 투입, 혐기 소화하는 방식이며 슬러지 최종처분방법은 탈수 후 소각된다. 반입되는 생 슬러지의 평균 TS 1.7%, VS 63% 이며 농축 후에는 평균 TS 9%, VS 75% 이다. 또 소화조로 들어가는 음식물 쓰레기는 평균 TS 8%, VS 85% 이며 소화 후 평균 TS 3.6% VS 59% 이다. 그리고 소화조의 pH는 7.3~7.8,유기산의 농도는 150mg/L~350mg/L, 가스발생량은 하루 평균 $26,500Nm^3$이며 소화효율은 평균 67%이다. 혐기성소화는 산소가 없는 무 산소 상태 에서 분해 가능한 유기물을 분해시켜 메탄으로 전환시키고 우리는 현재 이 가스를 소화조 가온에 사용하고, 판매하고 있다. 소화효율을 높이기 위하여 가온과 교반이 행해지는데 가온방식은 직접가온방식(증기주입식)과 간접가온방식(열교환방식)이 있다. 그중 우리는 간접가온방식을 채택하여 소화효율을 높였고 일반중온 혐기소화온도보다 약간 높은 $38^{\circ}C$로 운전한다. 그리고 일반적으로 알려진 교반방식인 가스교반, 기계교반, 이 둘은 병행한 교반이 아닌 독자적인 방법을 이용, 소화조 내의 슬러지가 정체되어 교반되지 않는 부분을 최소화 하였다. 이때 미생물이 투입되기 힘든 소화조 아래 쪽 으로도 고루분포 되어 슬러지를 이용 하게 되고 소화조 상하부의 온도차가 $1^{\circ}C$ 이하로 거의 완벽한 교반상태를 보여 줌 으로써 소화효율을 최대한으로 한다. 더욱이 소화일수 부족으로 인한 전반적 소화효율 저하가 발생하지 않도록 input과 output 조절을 통한 적정소화일수 20~25일을 최대한 맞추어 운전하여 소화조 설계용량의 평균 90%를 활용하고 있다.

  • PDF

Measurement of the Radiolysis Gases Generated in Several Waste Forms by External Irradiation (${\gamma}$-조사에 의한 방사성폐기물의 방사분해가스 발생량 평가)

  • Kwak, Kyung-Kil;Ryue, Young-Gerl;Kim, Ki-Hong;Je, Whan-Gyeong;Kim, Dong-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.345-352
    • /
    • 2006
  • The cemented and paraffin wastes form which are incorporated the concentrated wastes, the cemented waste form which is incorporated the spent ion-exchange resins, and the miscellaneous waste(decontamination paper) were irradiated up to $10^{+8}$ rads at $5.43{\times}10^{+5}$ rads/hr with Co-60(72,023.9 Ci) as an external irradiation source. As a result, the radiolysis gases such as $H_2,\;CH_4,\;N_2,\;C_2H_6,\;O_2,\;CO\;and\;CO_2$, were measured in all the wastes. The major gas which was generated in all the wastes was hydrogen($H_2$). The volume of the generated gases showed a difference from $0.029{\sim}0.788\;cm^3.atm/1.1g$ according to the type of wastes, and more was generated in the cemented waste form incorporated a spent ion-exchange resin than in the other wastes. More hydrogen($H_2$) gas was generated in the decontamination paper waste than in the other wastes, and the G($H_2$) value was 0.12.

  • PDF

Investigation of the High Temperature Shift for a Generation of High Purity Hydrogen (고순도 수소생산을 위한 고온전이 반응 연구)

  • Lim, Mun Sup;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.157-160
    • /
    • 2008
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$ (steam) followed by water gas shift (WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift (HTS) and a low temperature shift (LTS). In a typical operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about 3~5%. The HTS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to a range of 2~4%. The iron based catalysts (G-3C) was used for the HTS to convert the most of CO in the effluent from the partial oxidation (POX) to $H_2$ and $CO_2$ at a relatively high rate. Parametric screening studies were carried out for variations of the following variables: reaction temperature, steam flow rate, components ratio ($H_2/CO$), and reforming gas flow rate.

Drying of Crops with Solar Heated Air -Drying of Rough Rice - (태양열을 이용한 농산물건조에 관한 연구 (I)-벼의 건조에 대하여)

  • 이문남;금동혁;류능환
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.100-113
    • /
    • 1978
  • Drying grain with conventional artificial drying methods requires great quantities of petroleum fuels. Depletion of fossil fuel increases the need of the utilization of solar energy as an alternative to petroluem fuels for drying grain , an energy intensive agricultural operation. Many techniques for the utilization of solar energy in grain drying have been developed, however, there are many problems in adopting solar energy as an energy sources for drying grain. Futhermore, very little research has been done on solar grain drying in Korea. This study was conducted to evaluate the availability of solar energy for drying of rough rice in Chuncheon, Suweon, and Jinju areas based on 50year meteorological data, and to analyze experimentally the performance of a solar air collector for dying grain, and to find the effects of solar heated air compared to unheated air on the rate of drying and energy consumption required for drying of rough rice. The results of this study was may be summarized as follows ; 1. Monthly average daily total radiation on a horizontal surface in October was 260.6 ly/day for Chuncheon, 240.3 ly/day for Suweon , and 253.4 ly/day for Jinju area, respectively. 2. the ratio of monthly average daily diffuse radiation to daily total radiation on a horizontal surface was approximately 0.41 for Chuncheon, 0.45 for Suweon, and 0.44 for Jinju area, respectively. 3. Although the statistical distribution curves of daily total radiation for the three locations were not identical , the differences among them were not large and may be neglected for many practical purposes. 4. I was estimated that the optimum tilting angle of the collector in October was approximately 46 degrees for Chuncheon and Suweon and 45 degrees for Jinju. 5. The ratio of the total radiation on a optimum tilting plane to that on a horizontal plane was estimated to be 1.36 for Chuncheon, 1.31 for Suweon, and 1.27 for Jinju , respectively. 6. The collection efficiency of the solar air collector ranged from 47. 8 to 51. 5 percent at the air flow rates of 251. 1-372.96 $m^3$/hr. High efficiency remained nearly , constant during the best sunshine hours, 10 a.m. to 2 p.m. and decreased during other hours. More energy was collected as the air flow rate incresed. 7. The average temperature rise in the drying air from the solar collector for the test period varied from $6.5^\circC$ to $21.8^\circC$ above the ambient air temperature. 8. Solar-dried rough rice averaged 13.7 percent moisture (w.b.) after 130 hours of drying with the air flow rate of 1. 64 ccm/$m^3$, and rough rice dried with natural air averaged 15.1 percent moisture (w.b.) after 325 hours of drying with the same air flow rate. 9. Energy saving of 2.4 kwh per $m^3$ percentage point of moisture removed was obtained from solar heated air drYing. The solar bin used 53.3 percent less energy per percentage point of moisture removed than the natural air bin.

  • PDF

The Sintering Behavior of the Hyperstoichiometric Uranium Dioxide in the Oxidative Atmosphere (약 산화성 분위기 중에서의 과산화성 2산화 우라늄의 소결에 관한 연구)

  • Jang Keu Han;Won Ku Park;Han Su Kim
    • Nuclear Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 1983
  • The slightly hyperstoichiometric uranium dioxide, i.e. U $O_{2.005}$ and U $O_{2.01}$ within a range of the requirement for the use of a nuclear fuel, were sintered directly in an atmosphere of $CO_2$/CO mixture without any succeeding reduction process. The kinetics of sintering in the late stage were investigated for various O/U ratios. A sintering diagram, which show the relation of Temperature-Time-Density-Grain size, was established for each O/U ratio. Only by controlling the oxygen partial pressure in the sintering atmosphere, U $O_2$ pellet could be sintered very easily at low temperature 1050$^{\circ}$~120$0^{\circ}C$ with a density above 95% T.D. and average grain size above 7${\mu}{\textrm}{m}$. It was found that the rate of grain growth follows D=(Kt)$^{1}$4/ in the late stage of sintering. And the activation energies for grain growth in the final sintering stage were found to be 75, 64 and 62kca1/mo1 for U $O_{2.005}$, U $O_{2.01}$ and U $O_{2.10}$, respectively. Although no significant differences are obtained between the activation energies for different O/U ratios, the sinterability is enhanced considerably with increasing the oxygen partial pressure in the sintering atmosphere.tmosphere.

  • PDF

Cooling Performance on the Small Diesel Engine (소형(小型)디젤기관(機關)의 냉각성능(冷却性能)에 관(關)한 연구(硏究))

  • Kim, Sung Rai;Myung, Byung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 1990
  • This study was conducted to obtain basic data for the design of cooling system by the test of engine performance of the power tiller being used widely in the rural area. Among the various factors affecting engine performance, the flow rate of cooling water was considered as the major factor in this study. Motoring loss, output, fuel consumption ratio, torque, heat absorption of cooling water, and thermal efficiency were measured and analyzed based on three flow rates of cooling water such as 15, 20, and $25{\ell}/min$. The results obtained were as follows : 1. Motoring loss of the engine was 1.371 kW at 2,200 rpm., and mechanical efficiency was 79.1% at rated output level. 2. Output power of the engine increased with the flow rate of cooling water increased. 3. BSFC was 282.9g/kW-h at the flow rate of $20{\ell}/min$, and the temperature of cooling water at outlet was $80.9^{\circ}C$. 4. There was a little variation of torque of the engine depending on the flow rate of cooling water. 5. Absorption of heat by cooling water was increased with the increase of flow rate. 6. The highest thermal efficiency of 32.3% at the flow rate of $20{\ell}/min$ was observed.

  • PDF