• Title/Summary/Keyword: Fuel vapor pressure

Search Result 132, Processing Time 0.024 seconds

Development of the vapor film thickness correlation in porous corrosion deposits on the cladding in PWR

  • Yuan Shen;Zhengang Duan;Chuan Lu ;Li Ji ;Caishan Jiao ;Hongguo Hou ;Nan Chao;Meng Zhang;Yu Zhou;Yang Gao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4798-4808
    • /
    • 2022
  • The porous corrosion deposits (known as CRUD) adhered to the cladding have an important effect on the heat transfer from fuel rods to coolant in PWRs. The vapor film is the main constituent in the two-phase film boiling model. This paper presents a vapor film thickness correlation, associated with CRUD porosity, CRUD chimney density, CRUD particle size, CRUD thickness and heat flux. The dependences of the vapor film thickness on the various influential factors can be intuitively reflected from this vapor film thickness correlation. The temperature, pressure, and boric acid concentration distributions in CRUD can be well predicted using the two-phase film boiling model coupled with the vapor film thickness correlation. It suggests that the vapor thickness correlation can estimate the vapor film thickness more conveniently than the previously reported vapor thickness calculation methods.

A Study of the Behavior of Liquid Phase Spray Considering Critical Condition of the Fuel (연료의 임계조건을 고려한 디젤 액상분무거동에 관한 연구)

  • Park, Jong-Sang;Kim, Si-Pom;Chung, Sung-Sik;Ha, Jong-Yul;Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.467-472
    • /
    • 2007
  • In this study the penetration distance of liquid phase fuel(i.e. liquid phsae length) was investigated in evaporative field. An exciplex fluorescence method was applied to the evaporative fuel spray to measure and investigate both the liquid and the vapor phase of the injected spray. For accurate investigation, images of the liquid and vapor phase regions were recorded using a 35mm still camera and CCD camera, respectively. Liquid fuel was injected from a single-hole nozzle (l/d=1.0mm/0.2mm) into a constant-volume chamber under high pressure and temperature in order to visualize the spray phenomena. Experimental results indicate that the liquid phase length decreased down to a certain constant value in accordance with increase in the ambient gas density and temperature. The constant value, about 40mm in this study the, is reached when the ambient density and temperature of the used fuel exceed critical condition.

Experimental Study on Microexplosive Burning of Binary Fuel Droplets (이성분 연료 액적 연소에 관한 실험적 연구)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.110-119
    • /
    • 2005
  • The combustion characteristics of binary component single droplets hanging at the tip of a quartz fiber are studied experimentally at different environmental pressures and temperatures under normal gravity. Normal Heptane and Normal Hexadecane are selected as two fuels with high difference in boiling temperatures. A falling electrical furnace in a high pressure vessel has provided high temperature environment. Nitrogen and air have formed the environment to study evaporation and combustion, respectively. The initial diameter of droplet was ranging from 1.1 to 1.3 mm. The evaporation and combustion processes were recorded by a high speed digital camera. Some characteristics of droplet burning under different environment conditions and different droplet composition have been investigated. Microexplosion of droplet take places under atmospheric pressure. Bubble formation and its consequent result, incomplete droplet disintegration which presents in all binary compositions, do not appear at high pressure. The initiation of combustion, always takes place in the bottom of droplet due to buoyancy effect of relatively cold fuel vapor. Also, the burning of binary droplet produces soot when the pressure is high.

  • PDF

Modeling of High Pressure Droplet Vaporization with Flash Phase Equilibrium Calculation (플래시 상평형 방법에 의한 고압 액적 기화 모델)

  • 이강원;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.65-69
    • /
    • 2002
  • Unsteady vaporization of a droplet quiescent in a high pressure environment are studied with emphasis placed oil the modeling of equilibrium at vapor-liquid interface. Complete set of conservation equations for liquid and gas phases is numerically time integrated. Vapor-liquid interfacial thermodynamics are solved by f]ash equilibrium calculation method. The model was proper]y validated with experiment and the improvement in the solution accuracy was made. Vaporization of n-pentane fuel droplet in nitrogen background gas is examined. Effects of ambient gas solubility, property variation, transient diffusion, and multicomponent transport on the droplet vaporization are investigated systematically. High-pressure effects on the droplet vaporization is examined and discussed.

  • PDF

The Effect of Impinging Land Size on Diesel Spray Behavior in OSKA Type Combustion Chamber (OSKA형 연소실에서 충돌면크기변화가 디젤분무거동에 미치는 영향)

  • 임덕경;박권하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.18-26
    • /
    • 2001
  • OSKA engine was developed to remove the dense core of injection sprays. The engine uses impinging spray on a small pip, which spray after impinging is broken into smaller drops and disperses into fee space in chamber. In this paper the pip size is analyzed to give more dispersion of spray and fuel vapor. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form, and the droplet wall interaction is modelled as a function of the velocity normal to impaction lands. The droplet distributions, vapor fractions and gas flows are analyzed for various injection pressure cases. Numerical results indicate that the land diameter of 5.6mm has the best performance of spray dynamics and vaporization in the test sizes.

  • PDF

Spray Characteristics Depending Upon Impaction Land Surface Angle Variations (충돌면 경사각도 변화에 따른 분무특성)

  • Kim, C.H.;Kim, J.H.;Park, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.63-71
    • /
    • 1998
  • In a diesel engine the phenomenon of spray impaction on a combustion chamber wall has been taken as an undesirable matter because of the deposition of fuel on the surfaces, and the subsequent slow evaporation and mixing with air resulting in unburned hydrocarbons. Therefore many researches have concentrated on avoiding fuel impaction on surfaces. On the contrary done a number of studies using spray wall impactions in a positive way, which makes the droplets smaller, changes the direction into free spaces far from the wall and also improves mixing with air. In this paper the angle variations of the impaction land sufrace prepared for the injection spray is analysed as a simulative manner. The spray dispersions, vapor distributions and flow fields are compared with impacting angle variation. The results show more angle give more vapor distribution until $15^{\circ}$.

  • PDF

An Experimental Study on Pressure-resistant Performance of a Re-fillable LPG Cylinder (LPG 재충전 소형 용기의 내압성능에 관한 실험적 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.16-20
    • /
    • 2014
  • In this paper, the performance of pressure-resistance is validated by experiment on LPG re-fillable cylinder which has increased demands for spreading of camp culture. Propane has increased suppliable requirements as fuel because of easily vaporizing effect of low boiling point. However, propane can be occurring safety problems inevitably by high vapor pressure. So, the priority is that safe cylinder should furnish in order to be circulated as safe fuel. LPG re-fillable cylinder for high pressure is tried to furnish internationally, that is restricted by safe issues. For these reasons, the pressurization and rupture are performed by using pressurizing device that is operated by hydraulic system. Also, this paper will offer rupturable characteristics comparing with vapor pressure of propane. This paper is expected as basis research for developing re-fillable cylinder and using standard for supplying them.

DME and Diesel HCCI Combustion Characteristics (DME와 Diesel의 HCCI 연소특성 비교)

  • Lee, Joo-Kwang;Kook, Sang-Hoon;Park, Cheol-Woong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.231-236
    • /
    • 2003
  • HCCI(Homogeneous Charge Compression Ignition) combustion is an advanced combustion process explained as a homogeneously premixed charge of a fuel where air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Particulate matters (PM) could be also reduced by the homogeneous combustion and no fuel-rich zones. Injection timing is extremely advanced to achieve homogeneous charge where a diesel fuel could not be vaporized sufficiently due to low pressure and low temperature condition. Also the over-penetration could be a severe problem. The small injection angle and multi-hole injectors were applied to solve these problems. Dimethyl ether (DME) as an altenative fuel was also applied to relive the bad vaporization problem associated with early injection of diesel fuel. Neat DME has a very high cetane rating and high vapor pressure. Contained oxygen reduces soot during the combustion. Experimental result shows DME can be easily operated in an HCCI engine. PM shows almost zero value and NOx is reduced more than 90% compared to direct-injection diesel engine operating mode but problem of early ignition needs more investigation.

  • PDF

Fuel-Spray Characteristics of High Pressure Gasoline Injection in Cross Flows (횡단공기류에서의 고압 가솔린 분사시 연료분무 특성)

  • 이석환;최재준;김성수;이상용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.30-39
    • /
    • 2001
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced by the high pressure injector is of paramount importance in DISI(Direct Injection Spark Ignition) engines in that the primary atomization process must meet the requirement of quick and complete evaporation, mixing with air and combustion especially to prohibit the excessive HC emissions. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engine. The direct Mie scattered and shadowgraph images presented the macroscopic view of the liquid sprays and vapor fields. The velocity and particle size of fuel droplets were investigated by phase doppler anenometer(PDA) system. The processes of atomization and evaporation with a DISI injector were observed and consequently utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF