• 제목/요약/키워드: Fuel temperature profile

검색결과 67건 처리시간 0.021초

Calculation of fuel temperature profile for heavy water moderated natural uranium oxide fuel using two gas mixture conductance model for noble gas Helium and Xenon

  • Jha, Alok;Gupta, Anurag;Das, Rajarshi;Paraswar, Shantanu D.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2760-2770
    • /
    • 2020
  • A model for calculation of fuel temperature profile using binary gas mixture of Helium and Xenon for gap gas conductance is proposed here. In this model, the temperature profile of a fuel pencil from fuel centreline to fuel surface has been calculated by taking into account the dilution of Helium gas filled during fuel manufacturing due to accumulation of fission gas Xenon. In this model an explicit calculation of gap gas conductance of binary gas mixture of Helium and Xenon has been carried out. A computer code Fuel Characteristics Calculator (FCCAL) is developed for the model. The phenomena modelled by FCCAL takes into account heat conduction through the fuel pellet, heat transfer from pellet surface to the cladding through the gap gas and heat transfer from cladding to coolant. The binary noble gas mixture model used in FCCAL is an improvement over the parametric model of Lassmann and Pazdera. The results obtained from the code FCCAL is used for fuel temperature calculation in 3-D neutron diffusion solver for the coolant outlet temperature of the core at steady operation at full power. It is found that there is an improvement in calculation time without compromising accuracy with FCCAL.

A Calculation Model for Fuel Constituent Redistribution and Temperature Distribution on Metallic U-10Zr Fuel Slug of Liquid Metal Reactors

  • Nam, Cheol;Hwang, Woan
    • Nuclear Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.507-517
    • /
    • 1998
  • Unlike conventional fuel types, fuel constituent redistribution and sodium intrusion into the fuel slug are the unique phenomena of the irradiated metallic fuel. A thermal calculation model on metallic U-10 wt.%Zr fuel rod for LMRs is developed with considerations given to these phenomena. The amount of constituent redistribution is estimated based on the thermotransport process. The temperature profile of fuel slug is predicted by taking into account of Zr redistribution, porosity formation and sodium logging effects. A sample calculation is performed and compared to experimental data in literature. As a result, the predicted redistribution and temperature profile are well agreed with experimental data, assuming that 15 times increment of ex-reactor diffusivity, $Q_{r}$ $^{*}$ is -50 kJ/mole and sodium is infiltrated only outside of the fuel slug. Furthermore, the redistribution effects on fuel integrity and fuel temperature profile are discussed.d.

  • PDF

인산형 연료전지 스택의 전산모사 (Simulation Study of the Phosphoric Acid Fuel Cell Stack)

  • 최성우;이갑수;김화용
    • 청정기술
    • /
    • 제7권4호
    • /
    • pp.243-250
    • /
    • 2001
  • 연료전지는 환경 친화적 대체에너지로 지속적인 연구가 이루어지고 있다. 최근에는 연료전지의 실용화를 위해 적층, 대면적화에 대한 기본 기술이 중요시되고 있다. 그러나 연료전지중 가장 많은 기술적 발전을 이룬 인산형 연료전지에 관해서도 연료전지 설계의 기초자료가 되는 스택의 온도 분포에 대한 연구는 거의 발표되지 않았다. 본 연구에서는 인산형 연료전지 스택의 온도 분포를 전산모사하였다. 이를 통하여 여러 작동 조건에서 스택의 온도 분포를 알아내었으며, 스택 운전시 적절한 온도 측정 위치를 예측할 수 있었다. 또한 냉각단의 유로를 변경하여 전산모사를 수행한 결과 스택 내부의 온도 분포의 표준 편차를 약 50% 감소시키는 효과적인 냉각 디자인을 제안할 수 있었다.

  • PDF

디젤 엔진소음 II (Diesel Combustion Noise Reduction based on the Numerical Simulation)

  • 강종민;안기환;조우흠;권몽주
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.909-918
    • /
    • 1997
  • Combustion oriented noise is a part of engine noise, which is mainly determined by the in-cylinder pressure profile and the structure attenuation of an engine. A numerical model for predicting the in-cylinder pressure profile and the resultant combustion noise developed by the use of a commercial code. The model is experimentally validated and updated based on the performance as well as the noise by considering the fuel injection timing, the fuel injection rate, Cetane number, intake temperature, and compression ratio. For providing a design guide of a fuel injector for a low combustion noise engine model, the optimal parameters of injection pressure profile, injection rate profile, and injection timing are determined, which gives the 5 dBA noise reduction.

  • PDF

A Simple Thermal Model of Fuel Thermal Management System in Aircraft Engine

  • Youngjin Kim;Jeonghwan Jeon;Gonghoe Gimm
    • 항공우주시스템공학회지
    • /
    • 제17권5호
    • /
    • pp.11-18
    • /
    • 2023
  • The architecture of the Fuel Thermal Management System (FTMS) in a commercial aircraft engine was built to model and simulate the fuel system. The study shows the thermal interactions between the fuel and engine lubrication oil through the mission profile of a high bypass ratio, two-spool turbofan engine. Fuel temperature was monitored as it flowed through each sub-component of the fuel system during the mission. The heat load in the fuel system strongly depended on the fuel flow rate, and was significantly increased for the periods of cruise and descent with decrease of fuel flow rate, rather than for the periods of take-off. Due to the thermal interaction in the pump housing, the fuel temperature at the outlet of the low-pressure pump was increased (4.0, 9.2, and 30.0) % over the case without thermal interaction for take-off, cruise, and descent, respectively.

팬형분무의 주변조건에 따른 입자분포 변화 (The Droplet Size Distribution of Fan Spray at Different Surrounding Conditions)

  • 문석수;최재준;배충식
    • 대한기계학회논문집B
    • /
    • 제31권7호
    • /
    • pp.611-619
    • /
    • 2007
  • In this study, the droplet size distribution of a slit injector at different surrounding conditions, such as air flow and fuel temperature, were investigated. Phase Doppler anemometry (PDA) was utilized to investigate the initial droplet size distribution and the effect of fuel temperature and air flow on droplet size distribution. The entrained air motion was also evaluated by the temporal velocity profile of droplets. When the air flow velocity increased, the small droplets were more entrained to the upper and central parts of the spray and this tendency was confirmed by plotting the temporal velocity profile of droplets. This entrainment of small droplets at high airflow velocities caused relatively small mean droplet size at upper and central parts of the spray and the large mean droplet size at downstream and edge of the spray, compared to that of low airflow velocities. The total mean droplet size, obtained by averaging the size of all droplets measured at all test locations, decreased when the high airflow velocities were applied. The increased fuel temperature, with an airflow velocity of 10m/s, caused reduced droplet size at all test locations. However, the decreased value of mean droplet size at high fuel temperatures was relatively higher at upper parts of the spray, compared to downstream, as a result of enhanced entrainment of small droplets to upper parts of the spray.

대향류 확산화염의 고온공기 연소특성에 관한 수치해석 (A Numerical Analysis of the Characteristics with High Temperature Air Combustion in Counterflow Diffusion Flame)

  • 조은성;히데아키 코바야시;정석호
    • 한국연소학회지
    • /
    • 제8권4호
    • /
    • pp.9-14
    • /
    • 2003
  • High temperature air combustion technology has been utilized by using preheated air over 1100 K and excessive exhaust gas recirculation. Numerical analysis was performed to investigate the combustion characteristics with high temperature deficient oxygen air combustion by adopting a counterflow as a model problem accounting for detailed chemical kinetics. Methane($CH_4$) was used as a test fuel and calculated oxidizer conditions were low temperature high oxygen (300K, $X_{O2}=0.21$) and high temperature low oxygen (1300K, $X_{O2}=0.04$) conditions. The latter case showed that the flame temperature is lower than the former case and its profile showed monotonic decrease from oxidizer to fuel side, without having local maximum flame temperature at high stretch rate. Also, heat release rate was one order lower and it has one peak profile because of low oxygen concentration and heat release rate integral is almost same for stretch rate. High temperature low oxygen air combustion shows low NO emission characteristics.

  • PDF

CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (II)-당량비가 위상별 온도에 미치는 영향- (Phase-Resolved CARS Temperature Measurement in a Lean Premixed Gas Turbine Combustor (II) -Effect of Equivalence Ratio on Phase-Resolved Gas Temperature-)

  • 이종호;전충환;박철웅;한재원;장영준
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1193-1201
    • /
    • 2004
  • The effect of equivalence ratio and fuel/air mixing quality on the phase-resolved gas temperatures at different phases of the oscillating pressure cycle was experimentally investigated. An atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane with heat release rate of 1.59kW was used. Temperature measurements were made using coherent anti-Stokes Raman spectroscopy (CARS) at several spatial locations fur typical unstable combustion conditions. Analysis was conducted using parameters such as phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs). Also the probability on the occurrence of high temperature (over 1900K) was investigated to get the information on the perturbation of equivalence ratio and NOx emission characteristics. It was shown that most of temperature histograms exhibit Gaussian profile which has short breadth of temperature fluctuation at equivalence ratio of 0.6, while beta profile was predominant for the cases of other equivalence ratios (${\Phi}$=0.55, 0.50). It was also shown that phase-resolved averaged temperature oscillated in phase with pressure cycle, while normalized standard deviations which represent temporal turbulent intensity of temperature showed nearly constant value around 0.1. The characteristics on the occurrence of high temperature also displayed periodic wave form which was very similar to the pressure signal. And the amplitude of this profile went larger as the fuel/air mixing quality became poorer. These also provided additional information on the perturbation of equivalence ratio at flame as well as NOx emission characteristics.

CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (2);당량비가 위상별 온도에 미치는 영향 (Phase-resolved CARS Temperature Measurements in a Lean Premixed Gas Turbine Combustor (2);Effect of equivalence ratio on phase-resolved gas temperature)

  • 이종호;문건필;박철웅;한재원;전충환;장영준
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.103-108
    • /
    • 2003
  • The effect of equivalence ratio and fuel/air mixing quality on the phase-resolved gas temperatures at different phases of the oscillating pressure cycle was experimentally investigated. An atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane with heat release rate of 1.59kW was used. Temperature measurements were made using coherent anti-Stokes Raman spectroscopy (CARS) at several spatial locations for typical unstable combustion conditions. Analysis was conducted using parameters such as phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs). Also the probability on the occurrence of high temperature (over 1900K) was investigated to get the information on the perturbation of equivalence ratio and NOx emission characteristics. It was shown that most of temperature histograms exhibit Gaussian profile which has short breadth of temperature fluctuation at equivalence ratio of 0.6, while beta profile was predominant for the cases of other equivalence ratios (${\Phi}$=0.55, 0.50). The characteristics on the occurrence of high temperature also displayed periodic wave form which is very similar to the pressure signal. And the amplitude of this profile goes larger as the fuel/air mixing quality become poorer. These also provided additional information on the perturbation of equivalence ratio at flame as well as NOx emission characteristics.

  • PDF

Effect of PT/CT contact on the circumferential temperature distribution over a fully voided nuclear channel of IPHWR

  • Sharma, Mukesh;Kumar, Ravi;Majumdar, Prasanna;Mukhopadhyay, Deb
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1314-1321
    • /
    • 2019
  • In case of multiple failure scenario, such as LOCA with ECCS failure, the decay heat continues to raise the reactor core temperature, eventually leading to the core voiding. In such scenario the convective heat transfer becomes poor and the majority of the heat transfer from fuel bundle takes place by radiation mode. During this abnormal working condition, if the channel pressure is less than 1 MPa, the PT sags and come in contact with the CT. This results in high rate of heat transfer from contact location to moderator. The present paper aims to capture the temperature profile over a simulated nuclear channel during such scenario at a steady state temperature of $600^{\circ}C$ (Centre pin) at two different configurations of PT i.e. PT concentric with CT and PT contact with CT. The results showed that the bottom nodes of all the components (Fuel bundle, PT and CT) of the simulated channel was greatly influenced by the PT/CT contact. Moreover, higher temperature were observed at top nodes of the PT and outer pins of the fuel bundle. However, no significant variation in temperatures were obtained in fuel bundle and CT in concentric condition.