• Title/Summary/Keyword: Fuel supply system

Search Result 599, Processing Time 0.028 seconds

A Study on Optimal Hydrogen Supply System for materialization of Hydrogen Economy (수소경제 실현을 위한 수소최적공급시스템 연구)

  • Cho, Sang-Min;Boo, Kyung-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.759-762
    • /
    • 2007
  • 본 연구는 부문별 수소 및 연료전지의 수요량을 산정하고 원활한 수소공급을 위한 수소제조원의 최적믹스를 바탕으로 수소 도입 이후의 에너지믹스를 제시하는 것을 목표로 하고 있다. BaU 전망은 에너지경제연구원의 전망을 바탕으로 하였으며 기준안, 고유가안, 저유가안의 세가지 시나리오를 설정하여 각 시나리오별 분석을 수행하였다. 기준안에 따르면 수소 및 연료전지는 2015년 시장에 도입되어 2031년 5%의 시장보급률을 확보한 이후 보급률이 급격히 증가하는 것으로 나타났다. 수소 연료전지 시장중 특히 수송부문이 선도적 역할을 할 것으로 기대되며 FCV 보급대수는 2040년 1,132만대로 전체 자동차 시장의 48.4%를 차지할 전망이다. 최종에너지 중 수소의 비중은 2040년 8.7%에 이를 것으로 예측되며 수소의 도입으로 인해 1차에너지 중 신${\cdot}$재생에너지 비중이 BaU 대비 약 5.1%p 증가한 12.1%에 이를 것으로 분석되었다. 총 수소수요량은 777만톤에 이를 전망이다. 고유가안에서는 수소 및 연료전지가 2012년에 시장에 도입되는 것으로 가정하였으며 2040년 FCV 보급대수는 1,633만대에 이를 전망이다. 최종에너지 중 수소 비중은 11.5%에 이를 것으로 예상되며 1차에너지 신${\cdot}$재생에너지 비중은 11.6%로 분석되었다. 수소수요량은 1,015만톤으로 전망된다. 저유가안에서는 수소 및 연료전지가 2018년 도입되는 것으로 가정 하였다. 이 경우 2040년 FCV는 641만대가 보급되어 자동차 등록대수의 27.4%를 차지할 것으로 전망된다. 최종에너지 중 수소 비중과 1차에너지중 신${\cdot}$재생에너지 비중은 각각 5.5%, 9.1%에 이를 것으로 분석되었으며 수소수요량은 496만톤으로 전망된다.

  • PDF

A Method to Prevent CO Poisoning from Instantaneous Water Heaters (순간 가스온수기의 CO 중독사고 예방에 관한 연구)

  • Ahan, Jeong-Jin;Yeo, Chang-Hoon;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.26-30
    • /
    • 2011
  • Instantaneous water heater being not properly installed and not adequately maintained may produce fatal accidents due to carbon monoxide poisoning and suffocation. Insufficient supply of air into the gas appliance for complete burning of the fuel or blocking the outlet of the combustion gas could be a cause to increase carbon monoxide concentration in the exhaust gas of the gas appliance. In this work, the experiments are done with a collected instantaneous water heater using in domestic and the concentration of oxygen near the gas appliance and carbon monoxide in exhaust gas are observed to investigate the risk of instantaneous water heater. The concentration of oxygen near the gas appliance is reduced until 17.7% for the ratio of the ventilation area and floor area being 3.5%. If the outlet of combustion gas is blocked, the carbon monoxide concentration is steeply increasing more than 4,000ppm. Therefore, periodic checking the outlet of combustion gas is more important than vent area to reduce the risk of carbon monoxide poisoning.

The Progress of Fast Reactor Technology Development in China

  • Yang, Hong-Yi;Xu, Mi
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.220-237
    • /
    • 2004
  • China, as a developing country with a great number of population and relatively less energy resources, reasonably emphasizes the nuclear energy utilization development. For the long term sustainable energy supply, as for nuclear application the basic strategy of PWR-FBR-Fusion has been settled and envisaged. Due to the economy and experience reasons the nuclear power and technology development with a moderate style are kept in China up to now. In China mainland apart from two NPPs with the total capacity of 2.1 GWe in operation, four NPPs are under construction and two NPPs are planned for the Tenth Five Year Plan(2001-2005). Also another one or two NPPs are still in discussion. It could be foreseen that the total nuclear power capacity will reach 8.5GWe before the year 2005 and 14-15 GWe before 2010 respectively. As the first step for the Chinese fast reactor engineering development the 65MWt China Experimental Fast Reactor(CEFR) is under construction. The main components of primary, secondary and tertiary circuits and of fuel handling system have been ordered. The reactor building under construction has reached the top namely 57m above the ground. More than one hundred components and shielding doors have been installed. It is planned that the construction of reactor building with about 40,000$m^2$ floor surface will be completed in the end of the year 2002 and envisaged that the first criticality of the CEFR will be in the end of 2005. The second step of the Chinese fast reactor engineering development is a 300MWe Prototype Fast Breeder Reactor which is only under consideration up to now. Some important technical selections have been settled, but its design has not yet started.

  • PDF

Catalytic Hydrolysis of Sodium Borohydride on LiCoO3 - Supported Pt, Ru Catalysts (LiCoO3에 담지된 Pt, Ru 촉매에 의한 NaBH4 가수분해반응)

  • Ahn, Jong-Gwan;Choi, Seung-Hoon;Lee, Su-Chol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3261-3266
    • /
    • 2012
  • Sodium borohydride($NaBH_4$) known as the material of hydrogen generation and storage can produce the hydrogen via catalytic hydrolysis. This protide chemical could be used in the hydrogen supply system for residential and mobile fuel cells, and thus many researches and developments regarding to these chemicals and decomposition reactions have been implemented. We experimented the hydrolysis of $NaBH_4$ alkaline solution by metal oxide-supported PGM(platinum group metal) catalysts and measured the generation rate of hydrogen which is product of decomposition reaction. We compared oxides as catalyst supports, and the precious metals, Pt and Ru for the catalysts and studied the effects of amounts of catalyst added and $NaBH_4$ concentrations on the hydrogen generation rates and patterns.

Review and Suggestion of Korean RPS Scheme (한국의 RPS제도 이행 점검과 개선 방향)

  • Lee, Seongho
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.182-188
    • /
    • 2014
  • For the dissemination of new and renewable energy, Korean government introduced a renewable portfolio standard (RPS) scheme in 2012 after terminating feed-in tariff (FIT) scheme that was introduced in 2004. With the RPS scheme, 64.7% of its own goal (95.7% in PV and 63.3% in non-PV) was achieved in 2012 and 67.2% of that (94.9% in PV, 65% in non-PV) was achieved in 2013. The deployment of PV systems met the goal very well and that of non-PV did not. Recently, Korean government revised the target year of supplying 10% electricity from new and renewable energy from 2022 to 2024 and released a couple of measures on PV area. Recent studies showed that the bankability of a project plays a key role for PV dissemination. Therefore, the dissemination should be assessed from the point of bankability under the RPS scheme and a little adjustment is necessary to achieve the goal. Especially, installing a small size PV (<100 kwp) system needs a minimum REC price or a FIT scheme. In non-PV area, permission process is a common bottleneck and the related regulation should be eased. In addition, to achieve the long term goal, an implementing scenario has to be prepared. Currently, the portion of the waste-gas energy originated from fossil fuel is too large among the new and renewable energy sources and the portion should be lowered or eliminated in the 10% of electricity supply goal. Seoul Metropolitan Government (SMG) has its own FIT scheme for PV dissemination from 2014 SMG and revised the PV tariff from 50 to 100 won/kwh in effective of 2015. It is worth to spread the other provinces.

NOx Removal of Mn Based Catalyst for the Pretreatment Condition and Sulfur Dioxide (전처리 조건 및 황산화물에 대한 Mn-Cu계 촉매의 탈질특성)

  • Park, Kwang-Hee;You, Seung-Han;Park, Young-Ok;Kim, Sang-Wung;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1923-1930
    • /
    • 2012
  • Mn-Cu catalysts were tested for selective catalytic reduction of NOx with NH3. Influence of initial reaction temperature was studied for NOx conversion in which reaction temperature was changed three patterns. NOx conversion of catalysts calcined at 200, 300 and $340^{\circ}C$ was measured during the changing temperature. Hydrogen conversion efficiency of calcined catalysts was also measured in the $H_2$-TPR system. The deactivation effect of $SO_2$ on catalyst was investigated with the on-off control of $SO_2$ supply. The catalyst which calcined above $340^{\circ}C$ was somewhat deactivated with thermal shock. The reason of deactivation was draw from the results of surface area and hydrogen conversion.

Numerical Study of DF Chemical Laser Performance with Variations of D2 Injection Angles (중수소 분사각에 따른 불화중수소 화학레이저의 성능향상에 관한 수치적 연구)

  • Park, Jun-Sung;Baek, Seung-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • In the chemical laser system with a radial expansion nozzle array, the laser beam generation is achieved by mixing F atom from supersonic nozzle and $D_{2}$ molecule from holes of round-bended supply line. Based on that the fuel injection angle with main stream has a great influence of performance on supersonic combustor, the effects of $D_{2}$ injection angles with the main F flow on mixing enhancement are numerically investigated. The results are discussed by comparison with three cases of $D_{2}$ injection angles; $10^{o}$, $20^{o}$ and $40^{o}$ with the main flow direction. Major results reveal that as the $D_{2}$ injection angle increases, the maximum small signal gains and the static pressure in the laser cavity become higher. Consequently, the $D_{2}$ injection angle between $20^{o}$ and $40^{o}$ is recommended as an optimized geometric parameter in consideration of both of high gains and low cavity pressure.

A Study on Actual Condition Analysis of Solar Thermal System Demonstrative Enterprise in the J City (J시 태양열 시범사업의 실태조사.분석에 관한 연구)

  • Yoo, Dong-Chul;Lee, Doo-Ho;Lee, Eung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.80-85
    • /
    • 2011
  • As the instability of oil prices rose because of the situation in Libya, oil prices worldwide recorded the highest level due to the interference in supply. And so, in the 21st century, increasing efforts are being made to use clean new renewable energy centered on solar energy in accommodation of the cycle of nature instead of being reliant on the oil exporting nations. In order to reduce city energy internationally, the implementation of a low carbon city under the combined cooperation of industrial. construction, new renewable energy and transportation sectors with continuous development centered on low carbon green urban planning is now becoming established as the paradigm of the times. Recently, the government has begun carrying out the One Million Green Home Project, which is a project where the government with the goal of providing one million renewable energy homes by 2020 gives renewable energy subsidization for a partial amount of the standard unit price of installation when solar ray, solar heat, geothermal heat, small wind power or fuel cell energy is used. Thus, through this thesis which studies the state of and surveys the green village at Shingok-ri Songhak-myun Jaecheon-shi, it is the desire that the One Million Green Homes Project will be more efficiently developed and plans for improvement formed so that a high level of satisfaction in the product will be provided.

  • PDF

Vitrification of Simulated Combustible Dry Active Wastes in a Pilot Facility

  • Yang, Kyung-Hwa;Park, Seung-Chul;Lee, Kyung-Ho;Hwang, Tae-Won;Maeng, Sung-Jun;Shin, Sang-Woon
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.355-364
    • /
    • 2001
  • In order to evaluate and finally optimize the vitrification condition for combustible dry active waste (DAW), dust and gas generation characteristics were investigated for PE, cellulose, and mixed waste Tests were conducted by varying the operation variables such as melter configuration, excess oxygen amount, and waste feeding rate. Results showed that dust generation characteristics were affected by the operation parameters and the melter's configuration is the dominant one. For all tested DAWs, dust generation was reduced by increasing the waste feeding rate and the excessive oxygen amount in the melter. Among waste types, dust amount was decreased by the order of mixed wastes, PE, and cellulose. Other parameters such as temperature variation and operation time have also affected the dust generation. The optimum condition for the DAW vitrification was determined as the melter's configuration equipped for minimizing the waste dispersion with 20 kg/h of waste feeding rate and 100% of excessive oxygen supply. CO gas concentration in the off-gas was immediately influenced by the combustion state in the melter, but showed similar trend as the dust generation. For the NOx production during the vitrification process, thermal NOx, which is generated from the Post Combustion Chamber (PCC), rather than fuel NOx was assumed to be dominant. The gas cleaning of efficiencies of the PCC, wet scrubber, and Selective Catalytic Reduction system (SCR) were found to be high enough to keep the concentration of pollutants (CO, NOx, SOx, HCI) in the stack below their relevant emission limits.

  • PDF

Trends of Biorefinery as Systems for Bioenergy/Biochemicals Co-Products (바이오-에너지/케미컬 동시-생산 시스템 바이오리파이너리의 동향)

  • Kim, Seong Ho;Kim, Kil-Houn
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.250-261
    • /
    • 2013
  • In order to overcome the 21st century's challenges such as national energy supply security, global warming, and resource depletion, we are struggling to accelerate the paradigm shift in our life style from fossil fuel-based economy to biomass-based economy. In the context of sustainable bioeconomy revitalization, we comprehensively review the development status of the biorefinery as a system for bioenergy/biochemicals co-products on the basis of the various categories according to six criteria.