• 제목/요약/키워드: Fuel stratification

검색결과 70건 처리시간 0.021초

Numerical investigation of two-phase natural convection and temperature stratification phenomena in a rectangular enclosure with conjugate heat transfer

  • Grazevicius, Audrius;Kaliatka, Algirdas;Uspuras, Eugenijus
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.27-36
    • /
    • 2020
  • Natural convection and thermal stratification phenomena are found in large water pools that are being used as heat sinks for decay heat removal from the reactor core using passive heat removal systems. In this study, the two-phase (water and air) natural convection and thermal stratification phenomena with conjugate heat transfer in the rectangular enclosure were investigated numerically using ANSYS Fluent 17.2 code. The transient numerical simulations of these phenomena in the full-scale computational domain of the experimental facility were performed. Generation of water vapour bubbles around the heater rod and evaporation phenomena were included in this numerical investigation. The results of numerical simulations are in good agreement with experimental measurements. This shows that the natural convection is formed in region above the heater rod and the water is thermally stratified in the region below the heater rod. The heat from higher region and from the heater rod is transferred to the lower region via conduction. The thermal stratification disappears and the water becomes well mixed, only after the water temperature reaches the saturation temperature and boiling starts. The developed modelling approach and obtained results provide guidelines for numerical investigations of thermal-hydraulic processes in the water pools for passive residual heat removal systems or spent nuclear fuel pools considering the concreate walls of the pool and main room above the pool.

스파크 점화 엔진에서 초기화염 발달의 가시화 (Visualization of Initial Flame Development in an SI Engine)

  • 엄인용
    • 한국가시화정보학회지
    • /
    • 제2권2호
    • /
    • pp.45-51
    • /
    • 2004
  • Initial flame development and propagation were visualized under different fuel injection timings to relate the initial flame development to the engine stability in a port injection SI engine. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Stratification state was controlled by varying injection timing. Under each injection condition, the flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flame. The flame stability was estimated by the weighted average of flame area, luminosity, and standard deviation of flame area. Results show that stratification state according to injection timing did not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability governs the engine stability and lean misfire limit.

  • PDF

급속압축 장치를 이용한 불균일 예혼합기가 HCCI연소에 미치는 영향에 관한 연구 (An Investigation of HCCI Combustion Processes of Stratified Charge Mixture Using Rapid Compression Machine)

  • 임옥택
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.8-14
    • /
    • 2009
  • Effect of heterogeneity of combustion chamber has been thought as one of the way to avoid dramatically generating heat in HCCI Combustion. The purpose of this research is to investigate the effect of heterogeneity, especially thermal stratification and fuel strength stratification on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in Combustion Chamber of Rapid Compression Machine with 3 Kinds of pre-mixture has different properties. The stratified charge mixture is adiabatic compressed and on that process, in cylinder gas pressure and two-dimensional chemiluminescence images are measured and analyzed.

열적성층화가 DME/n-Butane 예혼합압축자기착화연소에 미치는 영향에 관한 연구 (Study on the Effect of Thermal Stratification on DME/n-Butane HCCI Combustion)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제34권12호
    • /
    • pp.1035-1042
    • /
    • 2010
  • HCCI 엔진연소에서 열적성층화 효과는 노킹을 회피하는 수단으로서 생각되고 있다. 본 연구에서는 DME 와 n-Butane 을 연료로 하는 HCCI 엔진연소의 열적성층화 효과를 조사하였다. 예혼합기가 연소실내부에 투입되고 부력의 효과를 이용하여 연소실 내부에 열적성층화를 형성한다. 그 뒤에 피스톤의 압축에 의해서 단열압축 시킨 후 연소실압력과 2 차원화학발광법을 계측하여 해석하였다. 열적성층화가 존재하는 경우에는, 저온산화반응과 고온산화반응의 시작시기가 균질한 경우에 비해서 진각되었고 연소기간은 길어졌다. 발광의 시작은 온도가 높은 곳에서부터 시작하여 온도가 낮은 곳으로 전파 되는 것을 확인하였고 발광기간도 길어짐을 확인하였다.

정적 용기내의 직접분사식 스파크 점화 성층 연소에 관한 연구 (A Study on Direct Injection Stratified Charge Combustion with Spark Ignition in Constant Volume Bomb)

  • 홍명석;김경석
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.30-40
    • /
    • 1994
  • The direct-injection stratified-charge engine has the advantages of higher thermal efficiency and less CO and $NO_x$ emission levels than conventional spark ignition engines. However, its actual utilization is prevented by high unburned hydrocarbon emission levels during light-load operations. In this paper, fundamental studies were carried out using a pancake type constant volume bomb. The effects of intensification of local premixing by tangential and radial fuel injection were examined experimentally. Unburned hydrocarbon emission levels with radial fuel injection were shown to be lower than those of tangential fuel injection cases. The stratification and mixing process of fuel jet and combustion process were observed by schlieren photography.

  • PDF

과농/희박 메탄 예혼합화염의 안정성에 관한 연구 (A Study on the Stability of Rich/Lean Methane Premixed Flame)

  • 이원남;서동규
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.170-177
    • /
    • 2005
  • The fuel-lean premixed flame has been considered one of the most efficient ways to reduce $NO_X$ emission during a combustion process. However, it is difficult to achieve stable fuel-lean premixed flames over the wide range of equivalence ratios: therefore, the application of fuel-lean flames to a practical combustion system is rather limited. In this study, the stability characteristics of fuel-lean flames stabilized by fuel-rich flames are investigated experimentally using a slot burner as a part of the basic research for practical application such as lean burn engines. Spontaneous emission of radical species were examined to understand the stability mechanisms of rich-lean premixed flames. The presence of fuel-rich flames could significantly lower the lean limit of fuel-lean flames. The stability of a fuel-lean flame is enhanced with the increase of fuel flow rate in a fuel-rich flame; how ever, it is not sensitive to the equivalence ratio of fuel-rich flames in the range of 1.2-2.4. The mechanisms of stable rich-lean premixed flames could be understood based on the characteristics of triple flame.

ANALYSIS OF IN-CYLINDER FUEL-AIR MIXTURE DISTRIBUTION IN A HEAVY DUTY CNG ENGINE

  • Lee, Seok-Y.;Huh, Kang-Y.;Kim, Y.M.;Lee, J.H.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.93-101
    • /
    • 2001
  • Distribution of fuel-air mixture has a strong influence on performance and emissions of a compressed natural gas (CNG) engine. In this paper, parametric study is performed by KIVA-3V to investigate fuel-air mixture with respect to injection timing, cycle equivalence ratio and engine speed. With open-valve injection intensive mixing during intake and compression stroke results in relatively homogeneous mixture in the cylinder. Sequential induction of fuel-air mixture and fresh air results in stratification in the cylinder among the test cases at closed-valve injection. There is close similarity in the calculated distributions of the mixture in the cylinder with different cycle equivalence ratios and engine speeds. The results are compared against pressure traces and flame images obtained in a single cylinder engine converted from a 11L six-cylinder heavy duty diesel engine.

  • PDF

직분식 가솔린기관 내에서 피스톤 형상이 연료혼합기 거동에 미치는 영향 (The Effect of Piston Bowl Shape on Behavior of Vapor Phase in a GDI Engine)

  • 황필수;강정중;김덕줄
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.614-621
    • /
    • 2002
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure was 5.1MPa. Two dimensional spray fluorescence image of vapor phase was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC 90$^{\circ}$, 80$^{\circ}$, 70$^{\circ}$, and 60$^{\circ}$. With a fuel injection timing of BTDC 90$^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC 60$^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

피스톤 형상에 따른 직분식 가솔린기관 내에서의 연료혼합기 거동특성 연구 (The Effect of Piston Bowl Shape on Behavior of Vapor Phases in a GDI Engine)

  • 황필수;강정중;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.915-920
    • /
    • 2001
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B, and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure is 5.1MPa. Two dimensional spray fluorescence image of vapor phases was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC $90^{\circ},\;80^{\circ},\;70^{\circ},\;and\;60^{\circ}$. With a fuel injection timing of BTDC $90^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC $60^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

  • PDF

스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교 (Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking)

  • 강민균;엄인용
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.