• 제목/요약/키워드: Fuel side

검색결과 348건 처리시간 0.028초

Influence of Side Leakage Loss on the Performance of a Micro Positive Displacement Hydraulic Turbine (마이크로 용적형 수차의 측면누설손실이 성능에 미치는 영향)

  • Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.291-295
    • /
    • 2006
  • Recently, greenhouse effect by $CO_2$ gas emitted by use of fossil fuel causes earth environmental problem. As a countermeasure of the global warming. micro hydropower under 100kW becomes the focus of attention for its clean and renewable energy sources. Newly developed micro positive displacement hydraulic turbine shows high efficiency and good applicability for the micro hydropoewer. The purpose of this study is to clarify the influence of leakage loss and effective head on the performance of the positive displacement hydraulic turbine for the further improvement of the turbine performance. The results show that the turbine. with a smaller side clearance. has much higher efficiency than that with bigger side clearance and it can sustain the high efficiency under the wider range of operation conditions. The turbine torque is proportional to the effective head and independent of the flow rate. The leakage is also dependent on the effective head but nearly independent of the flow rate.

An Experimental Study on the Combustion Characteristics of Wastewater-Emulsion Fuel (Emulsion(B.C유+폐수)연료의 연소효율에 관한 실험적 연구)

  • 정진도
    • Journal of Energy Engineering
    • /
    • 제12권4호
    • /
    • pp.267-273
    • /
    • 2003
  • Emulsion fuel is a very attractive fuel because of its energy saving and pollution prevention properties. We investigated and compared the combustion efficiency of B-C oil and emulsion fuel i.e. fuel made from the mixture of B-C oil and waste water. By installing an R-type thermocouple and an optical pyrometer on each side of the boiler, and by placing a combustion analyzer at the point of gas emissions, We were able to measure and compare each flame temperature, combustion rate and the concentration of emitted gas when B-C oil and emulsion fuel are burned. The following results were obtained: The flame temperature of emulsion fuel at the front and rear of the boiler is about 50$^{\circ}C$ lower than the flame temperature of B-C oil. The reason for this difference in temperature is that both latent and sensible heat is lost due to the moisture in the waste water of emulsion fuel. An analysis of emitted gases shows that when emulsion fuel is used polluting substances decrease also the concentration of CO becomes considerably lower. The combustion efficiency for B-C oil and emulsion fuel is 85.5% and 84.8% respectively.

Inter Propellant Seal Performance test for 75 ton Class Turbopump (75톤급 터보펌프 추진제 혼합 방지 실의 성능 시험)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Park, Min-Joo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제14권5호
    • /
    • pp.57-64
    • /
    • 2010
  • A performance test of inter propellant seal for a 75 ton class turbopump is conducted using water to evaluate leakage and endurance performance. Each part of fuel pump side and oxidizer pump side for a prototype inter propellant seal has been tested for verifying endurance performance during total accumulated test time 2,100 sec in water. The fuel pump side part with one-stage seal of carbon floating ring shows average leakage rate 13.7 gram/sec under average seal differential pressure 9.4 bar. On the other hand, the oxidizer pump side part with two-stage seal assembly of carbon floating rings shows average leakage rate 7.3 gram/sec under average seal differential pressure 9.5 bar. After the endurance performance test, the inter propellant seal shows good physical condition. A leakage performance test of the inter propellant seal for cryogenic environment will be performed using LN2 in the near future.

Dynamic Behaviors of a Single Vortex in Counter Non-reacting and Reacting Flow Field (대향류 반응 및 비반응 유동장에서의 단일 와동의 동적 거동)

  • Yoo, Byung-Hun;Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제27권9호
    • /
    • pp.1262-1272
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the dynamic behaviors of a single vortex in counter reacting and non-reacting flow field. A predictor-corrector-type numerical scheme with a low Mach number approximation is used in this simulation. A 16-step augmented reduced mechanism is adopted to treat the chemical reaction. The budget of the vorticity transport equation is examined to reveal a mechanism leading to the formation, destruction and transport of a single vortex according to the direction of vortex generation in reacting and non-reacting flows. The results show that air-side vortex has more larger strength than that of fuel-side vortex in both non-reacting and reacting flows. In reacting flow, the vortex is more dissipated than that in non-reacting flow as the vortex approach the flame. The total circulation in reacting flow, however, is larger than that in non-reacting flow because the convection transport of vorticity becomes much large by the increased velocity near the flame region. It is also found that the stretching and the convection terms mainly generate vorticity in non-reacting and reacting flows. The baroclinic torque term generates vorticity, while the viscous and the volumetric expansion terms attenuate vorticity in reacting flow. Furthermore, the contribution of volumetric expansion term on total circulation for air-side vortex is much larger than that of fuel-side vortex. It is also estimated that the difference of total circulation near stagnation plane according to the direction of vortex generation mainly attributes to the convection term.

Ramjet Mode Combustion Test for a Dual-Mode Ramjet Engine Model with a Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진 모델의 램젯 모드 연소 시험)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Chun-taek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제20권6호
    • /
    • pp.83-90
    • /
    • 2016
  • Ramjet mode combustion test was performed for a dual-mode ramjet engine model. The engine model consists of an air intake, a combustor and a nozzle. The combustor in the model has a large backward-facing step, designed to be used as a part of a rocket-based combined cycle engine. The test was performed at the flight speed of Mach 5 and the altitude of 24 km. Strong combustion was established only when the fuel was injected from both of the bottom-side and cowl-side wall. When the total fuel stoichiometric ratio was 1.0, distributed as 0.5 on the cowl side and 0.5 on the bottom side, the flow became subsonic at some portion in the combustor by thermal choking, i.e., ramjet mode was established for this condition.

Inter Propellant Seal Performance test for 75 ton Class Turbopump (75톤급 터보펌프 추진제 혼합 방지 실의 성능 시험)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Park, Min-Joo;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.47-53
    • /
    • 2010
  • A performance test of a 75 ton class turbopump inter propellant seal is conducted using water to evaluate leakage and endurance performance. Each fuel pump side part and oxidizer pump side part of a prototype inter propellant seal has been tested for verifying endurance performance during total accumulated test time 2,100 sec in water. The fuel pump side part with 1 stage carbon floating ring seal shows average leakage rate 13.7 gram/sec under average seal differential pressure 9.4 bar. On the other hand, the LOx pump side part with 2 stage carbon floating ring seal shows average leakage rate 7.3 gram/sec under average seal differential pressure 9.5 bar. After the endurance performance test, the inter propellant seal shows good physical condition. A cryogenic leakage performance test of the inter propellant seal will be performed using LN2 in the near future.

  • PDF

100 MWe Oxyfuel Power Plant Boiler System Process Design and Operation Parameters Sensitivity Analysis (100 MWe급 순산소연소 발전소 보일러계통 공정설계 및 운전변수 민감도 예측)

  • Baek, Sehyun;Ko, SungHo
    • Journal of the Korean Society of Combustion
    • /
    • 제18권4호
    • /
    • pp.1-11
    • /
    • 2013
  • The oxy-fuel combustion is $CO_2$ capture technology that uses mixture of pure $O_2$ and recirculated exhaust as oxidizer. Currently some Oxy-fuel power plants demonstration project is underway in worldwide. Meanwhile research project for converting 125 MWe Young-Dong power plant to 100 MWe oxy-fuel power plants is progress. In this paper, 1 D process analytical approach was applied for conducting process design and operating parameters sensitivity analysis for oxy-fuel combustion of Young-Dong power plant. As a result, appropriate gas recirculation rates was 74.3% that in order to maintain normal rating superheater, reheater steam temperature and boiler heat transfer patterns. And boiler efficiency 85.0%, CPU inlet $CO_2$ mole concentration 71.34% was predicted for retrofitted boiler. The oxygen concentration in the secondary recycle gas is predicted as 27.1%. Meanwhile the oxygen concentration 22.4% and moisture concentration 5.3% predicted for primary recycle gas. As the primary and secondary gas recirculation increases, then heat absorption of the reheater is tends to increases whereas superheater side is decreased, and also the efficiency is tends to decrease, according to results of sensitivity analysis for operating parameters. In addition, the ambient air ingression have a tendency to lead to decline of efficiency for boiler as well as decline of $CO_2$ purity of CPU inlet.

Investigation of Icing Phenomenon in Liquid Phase LPG Injection System (액상분사식 LPG 연료공급방식의 아이싱현상에 관한 연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • 제8권1호
    • /
    • pp.9-15
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system is considered as one of the next generation fuel supply systems for LPG, vehicles, since it can accomplish the higher power, higher efficiency, and lower emission characteristics than the existing mixer type fuel supply system. However, during the injection of liquid LPG fuel into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. A problem is that the moisture in the air freezes around the outlet of a nozzle, which is called icing Phenomenon. It may cause damage to the outlet nozzle of an injector. The frozen ice deposit detached from the nozzle also may cause a considerable damage to the inlet valve or valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of the air temperature in the inlet duct. Also, it was observed that the icing occurs first in the inlet of a nozzle, and grows considerably at the upper part of the nozzle inlet and the opposite side of the nozzle entrance. An LPG fuel, mainly consisting of butane, has lower latent heat of vaporization than that of propane, which is an advantage in controlling the icing phenomenon.

  • PDF

Assessment of direct glycerol alkaline fuel cell based on Au/C catalyst and microporous membrane

  • Yongprapat, Sarayut;Therdthianwong, Apichai;Therdthianwong, Supaporn
    • Advances in Energy Research
    • /
    • 제2권1호
    • /
    • pp.21-31
    • /
    • 2014
  • The use of a microporous membrane along with Au/C catalyst for direct glycerol alkaline fuel cell was investigated. In comparison with Nafion 112, the microporous Celgard 3401 membrane provides a better cell performance due to the lower ionic resistance as confirmed by impedance spectra. The single cell using Au/C as anode catalyst prepared by using PVA protection techniques provided a higher maximum power density than the single cell with commercial PtRu/C at $18.65mW\;cm^{-2}$ The short-term current decay studies show a better stability of Au/C single cell. The higher activity of Au/C over PtRu/C was owing to the lower activation loss of Awe. The magnitude of current decay indicates a low problem of glycerol crossover from anode to cathode side. The similar performance of single cell with and without humudification at cathode points out an adequate transport of water through the microporous membrane.

Studies on physical properties and application to new products from Heavy Residual Fuel Oil as Raw Materials (양산중질유(量産重質油)를 원료(原料)로한 신제품(新製品) 개발실용화(開發實用化)를 위(爲)한 조사연구(調査硏究))

  • Kim, Ju-Hang;Kang, Ho-Ken;Herh, Dong-Sub
    • Elastomers and Composites
    • /
    • 제20권2호
    • /
    • pp.115-131
    • /
    • 1985
  • Heavy residual fuel oils is a mixture of reduced crude from crude unit, bottom products from vacuum and/or catalytic cracking unit with distillate to meet the specification and generally used as heavy fuel oil for large combustion engines, boilers, etc$\cdots$. But this study was made to investigate heavy residual fuel oils for using as industrial raw material and resulted the following possiblities as valuable raw material as well as heavy fuel oil. 1) Production of straight asphalt through vacuum distillation unit. 2) Using straight asphalt from vacuum distillation unit for manufacturing of blown asphalts, cut back asphalts, emulsified asphalts and asphalt compound, rubber/asphalt sheet, etc$\cdots$. 3) Using waxy oil side streams for manufacturing of raw oil to be lube oil base stocks through solvent dewaxing. 4) Production of lube base oils and rubber process oils from dewaxed raw oil through chemical treatments. 5) Manufacturing of paraffine wax from slack wax to be produced as by product of dewaxing process.

  • PDF