• Title/Summary/Keyword: Fuel rods

Search Result 278, Processing Time 0.021 seconds

Mechanical robustness of AREVA NP's GAIA fuel design under seismic and LOCA excitations

  • Painter, Brian;Matthews, Brett;Louf, Pierre-Henri;Lebail, Herve;Marx, Veit
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.292-296
    • /
    • 2018
  • Recent events in the nuclear industry have resulted in a movement towards increased seismic and LOCA excitations and requirements that challenge current fuel designs. AREVA NP's GAIA fuel design introduces unique and robust characteristics to resist the effects of seismic and LOCA excitations. For demanding seismic and LOCA scenarios, fuel assembly spacer grids can undergo plastic deformations. These plastic deformations must not prohibit the complete insertion of the control rod assemblies and the cooling of the fuel rods after the accident. The specific structure of the GAIA spacer grid produces a unique and stable compressive deformation mode which maintains the regular array of the fuel rods and guide tubes. The stability of the spacer grid allows it to absorb a significant amount of energy without a loss of load-carrying capacity. The GAIA-specific grid behavior is in contrast to the typical spacer grid, which is characterized by a buckling instability. The increased mechanical robustness of the GAIA spacer grid is advantageous in meeting the increased seismic and LOCA loadings and the associated safety requirements. The unique GAIA spacer grid behavior will be incorporated into AREVA NP's licensed methodologies to take full benefit of the increased mechanical robustness.

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

Three dimensional analysis of temperature effect on control rod worth in TRR

  • Yari, Maedeh;Lashkari, Ahmad;Masoudi, S. Farhad;Hosseinipanah, Mirshahram
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1266-1276
    • /
    • 2018
  • In this paper, three-dimensional neutronic calculations were performed in order to calculate the dependency of CRW on the temperature of fuel and moderator and the moderator void. Calculations were performed using the known MTR_PC computer codes in the core configuration 61 of TRR. The dependency of CRW on the fuel temperature in the range of $20-340^{\circ}C$ and the moderator temperature of each control rods were studied. Based on the positions of the control rods, the calculations were performed in three different cases, named case A, B and C. By the results, the worth of each control rods increases by increasing of the coolant temperature in all methods, however, the total CRW is somewhat independent of the fuel temperature. In addition, the results showed that the variation of CRW versus density depends on the positions of the control rods and the most change in CRW in the coolant temperature, $20-100^{\circ}C$ (279 pcm), belongs to SR4. Finally the effect of void on CRW was studied for different void fraction in coolant. The most worth change is about $2 for 40% void fraction related to SR1 and SR3 in case B. For 40% void fraction, the total CRW increases about $7.5, $6 and $7 in cases, A, B and C, respectively.

Simulation of Asymmetric Fuel Thermal Behavior Using 3D Gap Conductance Model (3 차원 간극 열전도도 모델을 이용한 핵연료봉의 열적 비대칭 거동 해석)

  • Kang, Chang Hak;Lee, Sung Uk;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • A fuel assembly consists of fuel rods composed of pellets (UO2) and a cladding tube (Zircaloy). The role of the fuel rods in the reactor is to generate heat by nuclear fission, as well as to retain fission products during operation. A simulation method using a computer program was used to evaluate the safety of the nuclear fuel rods. This computer program has been called the fuel performance code. In the analysis of a light water reactor fuel rod, the gap conductance, which depended on the distance between the pellets and cladding tube, mainly influenced the thermomechanical behavior of the fuel rod. In this work, a 3D gap element was proposed to simulate the thermo-mechanical behavior of the nuclear fuel rod, considering the gap conductance. To implement the proposed 3D gap element, a 3D thermo-mechanical module was also developed using FORTRAN90. The asymmetric characteristics of the nuclear fuel rod, such as the MPS (missing pellet surface) and eccentricity, were simulated to evaluate the proposed 3D gap element.

Theoretical Estimation of the Impact Velocity during the PWR Spent Fuel Drop in Water Condition (경수로 사용후핵연료 수중 낙하 충돌 속도의 이론적 평가)

  • Kwon, Oh Joon;Park, Nam Gyu;Lee, Seong Ki;Kim, Jae Ik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • The spent fuel stored in the pool is vulnerable to external impacts, since the severe reactor conditions degrade the structural integrity of the fuel. Therefore an accident during shipping and handling should be considered. In an extreme case, the fuel assembly drop can be happened accidentally during handling the nuclear fuel in the spent fuel pool. The rod failure during such drop accident can be evaluated by calculating the impact force acting on the fuel assembly at the bottom of the spent fuel pool. The impact force can be evaluated with the impact velocity at the bottom of the spent fuel pool. Since fuel rods occupies most of weight and volume of a nuclear fuel assembly, the information of the rods are important to estimate the hydraulic resistance force. In this study, the hydraulic force acting on the $3{\times}3$ short rod bundle model during the drop accident is calculated, and the result is verified by comparing the numerical simulations. The methodology suggested by this study is expected to be useful for evaluating the integrity of the spent fuel.

Axial response of PWR fuel assemblies for earthquake and pipe break excitations

  • Jhung, Myung J.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.149-165
    • /
    • 1997
  • A dynamic time-history analysis of the coupled internals and core in the vertical direction is performed as a part of the fuel assembly qualification program. To reflect the interaction between the fuel rods and grid cage, friction element is developed and is implemented. Also derived here is a method to calculate a hydraulic force on the reactor internals due to pipe break. Peak responses are obtained for the excitations induced from earthquake and pipe break. The dynamic responses such as fuel assembly axial forces and lift-off characteristics are investigated.

MEASUREMENT OF NUCLEAR FUEL ROD DEFORMATION USING AN IMAGE PROCESSING TECHNIQUE

  • Cho, Jai-Wan;Choi, Young-Soo;Jeong, Kyung-Min;Shin, Jung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • In this paper, a deformation measurement technology for nuclear fuel rods is proposed. The deformation measurement system includes a high-definition CMOS image sensor, a lens, a semiconductor laser line beam marker, and optical and mechanical accessories. The basic idea of the proposed deformation measurement system is to illuminate the outer surface of a fuel rod with a collimated laser line beam at an angle of 45 degrees or higher. For this method, it is assumed that a nuclear fuel rod and the optical axis of the image sensor for observing the rod are vertically composed. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of the laser line beam position on the surface of the fuel rod is imaged as a parabolic beam in the high-definition CMOS image sensor. An ellipse model is then extracted from the parabolic beam pattern. The center coordinates of the ellipse model are taken as the feature of the deformed fuel rod. The vertical offset of the feature point of the nuclear fuel rod is derived based on the displacement of the offset in the horizontal direction. Based on the experimental results for a nuclear fuel rod sample with a formation of surface crud, an inspection resolution of 50 ${\mu}m$ is achieved using the proposed method. In terms of the degree of precision, this inspection resolution is an improvement of more than 300% from a 150 ${\mu}m$ resolution, which is the conventional measurement criteria required for the deformation of neutron irradiated fuel rods.