DOI QR코드

DOI QR Code

Theoretical Estimation of the Impact Velocity during the PWR Spent Fuel Drop in Water Condition

경수로 사용후핵연료 수중 낙하 충돌 속도의 이론적 평가

  • Received : 2015.08.24
  • Accepted : 2016.01.12
  • Published : 2016.06.30

Abstract

The spent fuel stored in the pool is vulnerable to external impacts, since the severe reactor conditions degrade the structural integrity of the fuel. Therefore an accident during shipping and handling should be considered. In an extreme case, the fuel assembly drop can be happened accidentally during handling the nuclear fuel in the spent fuel pool. The rod failure during such drop accident can be evaluated by calculating the impact force acting on the fuel assembly at the bottom of the spent fuel pool. The impact force can be evaluated with the impact velocity at the bottom of the spent fuel pool. Since fuel rods occupies most of weight and volume of a nuclear fuel assembly, the information of the rods are important to estimate the hydraulic resistance force. In this study, the hydraulic force acting on the $3{\times}3$ short rod bundle model during the drop accident is calculated, and the result is verified by comparing the numerical simulations. The methodology suggested by this study is expected to be useful for evaluating the integrity of the spent fuel.

저장조에 위치한 사용후핵연료는 가혹한 원자로 조건에 의해 구조적 건전성이 와해되므로 외력에 취약하다. 따라서 운반 및 취급 중 사고 상황이 고려되어야 한다. 극단적인 경우, 핵연료 취급 중 사고로 인해 핵연료 저장조에서 핵연료집합체 낙하가 발생할 수 있다. 이러한 사고 상황 하에서 연료봉 파손 등을 평가하기 위해서 수조에 충돌할 때 발생하는 충돌력을 분석할 필요가 있다. 이는 핵연료가 수조 바닥에 충돌할 때의 속도를 입력으로 하여 평가될 수 있다. 연료봉이 핵연료 중량 및 부피의 대부분을 차지하고 있으므로, 연료봉 다발은 수중 항력을 예측하는데 중요한 역할을 한다고 볼 수 있다. 본 연구에서는 $3{\times}3$ 의 짧은 연료봉 다발을 모델로 사용하여 수중에서 낙하할 때 받는 수력을 계산하였고, 이를 전산모사와의 비교를 통하여 검증하였다. 본 방법론을 사용후핵연료 건전성 평가에 적용할 수 있을 것으로 기대된다.

Keywords

References

  1. United States Nuclear Regulatory Commission, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants", U.S. NRC NUREG-0800, 15.7.4 (1981).
  2. United States Nuclear Regulatory Commission, "Control of Heavy Loads at Nuclear Power Plants", U.S. NRC NUREG-0612, 2.1 (1980).
  3. United States Nuclear Regulatory Commission, "Assumptions Used For Evaluating The Potential Radiological Consequences of a Fuel Handling Accident in the Fuel Handling and Storage Facility for Boiling and Pressurized Water Reactors", U.S. NRC Regulatory Guides 1.25 (1972).
  4. H.J. Wu, C.C. Tseng, and S.C. Cheng, "A Numerical Analysis for a BWR Fuel Assembly Drop Event", J. Nucl. Sci. Technol., 43(9), 1068-1073 (2006). https://doi.org/10.1080/18811248.2006.9711196
  5. W. Zhao, J. Liu, W. Stilwell, B. Hempy, and Z. Karoutas, "Modeling Nuclear Fuel Rod Drop with LS-DYNA", 13th International LS-DYNA Users Conference, Detroit (2014).
  6. American National Standards Institute(ANSI)/Ameri-can Nuclear Society(ANS)-57.5-1996, Light Water Reactors Fuel Assembly Mechanical Design and Evaluation (2006).
  7. R.D. Blevins , "Applied Fluid Dynamics Handbook", Krieger, Florida (2003).
  8. I.E. Idelchik, "Handbook of Hydraulic Resistance", 3rd Edition, CRC Press, London (1994).
  9. F. M. White, "Fluid Mechanics", 5th Edition, McGraw-Hill, New York (2002).
  10. C.C. Liu, Y.M. Ferng, and C.K. Shih, "CFD Evaluation of Turbulence Models for Flow Simulation of the Fuel Rod Bundle with a Spacer Assembly", Appl. Therm. Eng., 40, 389-396 (2012). https://doi.org/10.1016/j.applthermaleng.2012.02.027
  11. G. Hazi, "On Turbulence Models for Rod Bundle Flow Computations", Ann. Nuclear Energy, 32(7), 755-761 (2005). https://doi.org/10.1016/j.anucene.2004.12.012
  12. M.E. Conner, E. Baglietto, and A.M. Elmahdi, "CFD methodology and validation for single-phase flow in PWR fuel assembly", Nucl. Eng. Des., 240(9), 2088-2095 (2010). https://doi.org/10.1016/j.nucengdes.2009.11.031
  13. D. Chang and S. Tavoularis, "Numerical simulation of turbulent flow in a 37-rod bundle", Nucl. Eng. Des., 237(6), 575-590 (2007). https://doi.org/10.1016/j.nucengdes.2006.08.001