• 제목/요약/키워드: Fuel reforming

검색결과 309건 처리시간 0.022초

평판형 수소생산시스템의 최적 운전조건을 위한 연소조건별 분위기 온도 연구 (A study on the Temperature Profile with combustion conditions change for the Optimum drive of Plate type Hydrogen Generation Sytem)

  • 허수빈;박재민;윤봉석;이도형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.238-243
    • /
    • 2012
  • 저탄소 친환경 대체 에너지의 한 분야인 수소에너지는 화석연료의 개질 및 물의 전기분해 등 다양한 방법을 통해 얻어진다. 수소를 연료로 사용하는 연료전지인 PEMFC용 1kW급 평판형 수소생산시스템을 자체 개발 중이다. 연소조건에 따른 평판형 수소생산시스템의 개질적정온도까지의 승온시간과 CO, $O_2$, $CO_2$의 평균 농도를 통해 개질기 내 연소기의 특성을 조사하여 개질기의 적정 운전조건을 확인하였다. 차후 PEMFC용 고효율 평판형 수소생산시스템의 개발에 있어 수치해석, 수소수율 및 시스템의 전체 효율을 연구하기 위해 기초연구를 진행하였다.

플라즈마를 이용한 FGR 기반 저 NOx 연소 타당성 연구 (Feasibility Study of Low NOx Combustion based on FGR using Plasma Reformer)

  • 김관태;이대훈;차민석;길상인;윤진한;김동현;송영훈
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.1-7
    • /
    • 2007
  • A combined hydrogen generator of plasma and catalytic reformer was developed, and was applied to stabilize unstable flame of 200,000 Kcal/hr LPG combustor. The role of the plasma reformer was to generate hydrogen in a short period and to heat-up the catalytic reformer during the start-up time. After the start-up period, the catalytic reformer generates hydrogen through steam reforming with oxygen (SRO) reactions. The maximum capacity of the hydrogen generator was enough 100 lpm to stabilize the flame of the present combustor. In order to reduce NOx and CO emissions simultaneously, 1) FGR (Flue Gas Recirculation) technique has been adopted and 2) the hydrogen was added into the fuel supplied to the combustor. Test results showed that the addition of 25% hydrogen and 30% FGR rate lead to simultaneous decrease of CO and NOx emissions. The technique developed in the present study showed good potential to replace $NH_3$ SCR technique, especially in the small-scale combustor applications.

  • PDF

메탄의 무촉매 부분산화를 통한 합성가스 제조 연구 (A Study on Syngas Production By Noncatalytic Partial Oxidation of Methane)

  • 나익환;양동진;채태영;;방병열;양원
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.337-343
    • /
    • 2009
  • Noncatalytic partial oxidation of methane for producing synthesis gas was studied in a lab-scale experimental apparatus. Partial oxidation developed for high-temperature, fuel-rich combustion and it is exothermic process. but Steam reforming and Caron reforming is highly endothermic process to need much energy. Noncatalytic partial oxidation of methane is affected by temperature and equivalent ratio, so we studied effect about composition of synthesis gas at lab scale reactor. We used electronic heater to control the temperature of reactor. The quality of synthesis gas is improved and reduced heat value to require at Noncatalytic partial oxidation because the reacting temperature is lower at oxy condition.

고분자 전해질 연료전지 적용을 위한 DME 자열개질가스 내 CO제거 공정 특성 연구 (Experiment of CO Cleaning Process in DME Autothermal Reformate Gas for PEMFC Application)

  • 최승현;배중면
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.474-480
    • /
    • 2011
  • Hydrocarbon is required to be converted to pure hydrogen without carbon monooxide (CO) for polymer exchange membran fuel cell (PEMFC) applications. In this paper, CO cleaning processes as the downstream of Dimethyl ehter (DME) autothermal reforming process were performed in micro-reactors. Our study suggested two kinds of water gas shift (WGS) reaction process: High Temperature shift (HTS) - Low Temperature shift (LTS), Middle temperature shift (MTS). Firstly, using perovskite catalyst for MTS was decreased effieiciency since methanation. Using HTS-LTS the CO concentration was decreased about 2% ($N_2$ & $H_2O$ free) with the reaction temperature of $420^{\circ}C$ and $235^{\circ}C$ for HTS and LTS, respectively. As the final stage of CO cleaning process, preferential oxidation (PROX) was applied. The amount of additional oxygen need 2 times of stoichiometric at $65^{\circ}C$. The total conversion reforming efficiency of 75% was gained.

원자력 수소 경제성 비교를 위한 수소 생산 방법별 생산단가 분석 (Analysis of Hydrogen Production Cost by Production Method for Comparing with Economics of Nuclear Hydrogen)

  • 임미숙;방진환;윤영식
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.218-226
    • /
    • 2006
  • It can be obtained from hydrocarbon and water, specially production of hydrogen from natural gas is most commercial and economical process among the hydrogen production methods, and has been used widely. However, conventional hydrogen production methods are dependent on fossil fuel such as natural gas and coal, and it may be faced with problems such as exhaustion of fossil fuels, production of greenhouse gas and increase of feedstock price. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. However, nuclear hydrogen must be economical comparing with conventional hydrogen production method. Therefore, hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

수송 연료용 부분산화 개질기의 운전특성 (Operation characteristics of partial oxidation reformer for transportation fuels)

  • 이상호;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Partial oxidation reformer was fabricated and operated using commercial transportation fuels. Fuel injector and heating coil were used for fuel atomization and startup, respectively. The reformer was designed to produce syngas for $150{\sim}200W_e$ class solid oxide fuel cell. The reformer was operated in the $O_2$/C range between 0.6 and 0.8 while the capacity was fixed at $150W_e$. The temperature range in catalyst bed was between $500^{\circ}C$ and $900^{\circ}C$. Only 83% fuel was converted to $H_2$, CO, $CO_2$ and $CH_4$ at the operating conditions. The lowest temperature increase to $700^{\circ}C$ when the reformer was operated at $200W_e$, Although the temperature profiles was improved, fuel conversion was 88%. On the other hand, fuel was completely converted when micro-reactor operated at the same condition. This difference maybe due to aromatic compounds formation at homogeneous region. In addition, a significant amount of coke deposition was observed at vent line. Homogeneous reaction depends on the degree of mixing. For this purpose, two fluid nozzle and Ultra sonic injector were compared to investigate the effect of atomization. Sauter mean diameter(SMD) of Ultra sonic injector was lower than two-fluid nozzle at test condition. However, conversion efficiency and fuel conversion were not improved by using two-fluid nozzle. these results imply that the temperature of homogeneous reaction region should be controlled to prevent coke formation.

  • PDF

합성가스를 이용한 SI 엔진의 냉간시동 배기가스 배출특성에 관한 연구 (A Study on Cold Start Emission Characteristics using the Syngas in a SI Engine)

  • 송춘섭;김창기;강건용;조용석
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.66-72
    • /
    • 2008
  • Fuel reforming technology for the fuel cell vehicles could be adopted to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this paper, syngas was feed to 2.0 liter gasoline engine during the cold start and early state of idle condition. Not only cold start HC emission but also $NO_x$ emission could be dramatically reduced due to the fact that syngas has no HC and has nitrogen up to 50% as components. Exhaust gas temperature was lower than that of gasoline feeding condition. Delayed ignition timing, however, resulted in increased exhaust gas temperature approximated to gasoline condition. It is supposed that the usage of syngas in the gasoline internal combustion engine is an effective solution to meet the future strict emission regulations by the reduction of cold start THC and $NO_x$ emissions.

수소 에너지 정책의 세계동향 및 수소 압축기의 특허분석 (A World Trend of Hydrogen Energy Policy and Patent Analysis on the Hydrogen Compressor)

  • 심규진;공태우;이용훈;정한식;정효민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.179-185
    • /
    • 2005
  • Nowadays, study about hydrogen fuel which consist of hydrogen extraction process, reforming, fuel cell equipment, and receptacle are flourish all over the world. Currently, Korea hydrogen station is still underdevelopment. Yet the most important part such as hydrogen compressor has not been develop. Therefore, if the high pressure compressor for hydrogen have been developed by domestic technology. In the future many benefit can be gain instead of importing. Such as many hydrogen station can be built in Korea, and also Korea will be able to provide hydrogen system for worldwide. This study is going to analysis hydrogen compressor in order to store high pressure hydrogen. This is almost approach practical use of tile hydrogen storage method.

  • PDF

등유 개질가스를 이용한 고체산화물 연료전지 스택의 시스템 구성과 운영 (System configuration and operation for Kerosene-driven SOFC stack)

  • 김선영;윤상호;배중면;유영성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2144-2148
    • /
    • 2008
  • Kerosene-driven solid oxide fuel cell (SOFC) system with reformer, desulfurizer and after-burner was mainly developed for this study. Originally the system was developed for 1kW class SOFC system for residential power generation (RPG) application. As a preliminary study of 1kW class SOFC system operation, a short stack was applied to the system. The short stack consists of 7 cells of $10cm{\times}10cm$ area and was operated at $720^{\circ}C$. The effect of anode inlet gas composition to stack performance was investigated. Firstly, I-V characteristics of SOFC with different fuel of kerosene and hydrogen were studied. Secondly $CH_4$ internal reforming was performed at various anode inlet gas compositions of $H_2$, $CH_4$ and $H_2O$. Through these experiments the effects of each anode inlet gas component to stack performance were analyzed and the significant operating parameters were iscussed.

  • PDF

온도와 반응 시간에 따른 세라믹 튜브 내 메탄 열분해 반응의 메탄 전환율과 선택도 분석 (Analysis of Methane Conversion Rate and Selectivity of Methane Pyrolysis Reaction in Ceramic Tube According to Temperature and Reaction Time)

  • 이동근;김영상;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2022
  • Interest in hydrogen productions that do not emit carbon dioxide and can produce hydrogen at a low price is increasing. Reforming and electrolysis are widely used, but they have limitations, such as carbon dioxide problems and costs. The methane can be decomposed as hydrogen and solid carbon without carbon dioxide emission at high temperatures. In this research, the methane pyrolysis experiment was conducted at 1,200℃ and 1,400℃ in a ceramic tube. The composition of the produced gas was measured by gas chromatography before carbon blocked the tube. The methane conversion rate and hydrogen selectivity were calculated based on the results. The hydrogen selectivity was derived as 60% and 55% at the highest point at 1,200℃ and 1,400℃, respectively. The produced solid carbon was expected to be carbon black and was analyzed using scanning electron microscope.