• Title/Summary/Keyword: Fuel reforming

Search Result 309, Processing Time 0.025 seconds

Combustion Characteristics of HCNG Burner System with Tail Gas Addition (HCNG용 버너시스템에서 Tail Gas 첨가 시 연소특성)

  • Han, J.O.;Lee, J.S.;Kim, H.T.;Kim, S.M.;Lee, Y.C.;Kim, Y.C.;Hong, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.36-39
    • /
    • 2015
  • The combustion characteristics of metal fiber burner fueled natural gas with tail gas produced from reforming process were analyzed on the point of flame stability and excess air conditions. Also, it was analyzed the effect of energy efficiency improvement due to decrease the fuel input in reforming system by using residue gases. As a results, it was confirmed that tail gas including hydrogen, CO and $CO_2$ could be directly injected without any change of air control system in natural gas burner and also energy efficiency was increased up to 30% maintained stable combustion.

Thermal Flow Analysis of Operating Parameters in Autothermal Reformer (자열개질기의 운용조건에 따른 열유동 수치해석)

  • Park, Seung-Hwan;Kim, Jin-Wook;Park, Dal-Yung;Kim, Jae-Dong;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.61-67
    • /
    • 2011
  • The study is to analyze the chemical and heat-flow reactions in the hydrogen generation unit(autothermal reformer), using computational numerical tools. Autothermal reformer(ATR) is involved in complex chemical reaction, mass and heat transfer due to exothermic and endothermic reactions. Therefore it is necessary to reveal the effects of various operation parameters and geometries on the ATR performance by using numerical analysis. Numerical analysis needs to dominant chemical reactions that includes Full Combustion(FC) reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction and Direct Steam Reforming(DSR) reaction. The objective of the study is to improve theoretically the reformer design capability for the goal of high hydrogen production in the autothermal reformer using methane. Hydrogen production reached maximum in a certain value of Oxygen to Carbon Ratio(OCR) or Steam to Carbon Ratio(SCR). When the longitudinal distance to dimeter ratio(L/D) is increased, hydrogen production increases.

Dry Reforming of Methane over Promoters Added Ni/HY Catalysts (조촉매가 담지된 Ni/HY 촉매상에서 메탄의 건식 개질 반응 연구)

  • Jeong, Heondo
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.213-220
    • /
    • 2017
  • Dry reforming of methane to synthesis gas was investigated over a series of Ni/HY catalysts promoted by Mg, Ca, K and Mn. These catalysts were characterized by XRD, BET, SEM, and TGA analyses before and after the reaction. Conversions and product yields were increased with increasing nickel loading up to 13 wt%. Among the catalysts tested in this work, the Ni-Mg/HY catalyst showed the highest carbon resistance and the most stable catalytic performance. It was revealed that the addition of Mg promoter reduced the nickel particle size and produced the highly dispersed nickel particles, and consequently, retarded the catalyst deactivation.

A Study on the Characteristics of Ni/Ce0.9Gd0.1O2-x and Cu/Ce0.9Gd0.1O2-x Catalysts for Methanol Steam Reforming Synthesized by Solution Combustion Process (용액연소법으로 합성한 Ni/Ce0.9Gd0.1O2-x와 Cu/Ce0.9Gd0.1O2-x 촉매의 메탄올 수증기 개질 특성 연구)

  • LEE, JUNGHUN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Methanol is a liquid fuel which could also be produced from renewable energy sources and has appreciably high energy density. In this work, we investigated the application of $Ce_{0.9}Gd_{0.1}O_{2-x}$ supported Cu and Ni catalysts for hydrogen production via methanol steam reforming. Catalysts were synthesized by solution combustion synthesis. The prepared catalysts with various active materials and Cu loading amounts were tested in a reactor at $200-300^{\circ}C$, 0-5 barg range and steam to methanol molar ratio was 1.5. The catalytic properties of Cu and Ni were compared, and the catalytic performance was shown to depend on the amounts of metal loading and operating conditions such as reaction temperature and pressure.

Study on the Pressurized Steam Reforming of Natural Gas and Biogas Mixed Cokes Oven Gas (코크스오븐가스 기반 천연가스, 바이오가스가 혼합된 연료의 가압 수증기 개질 반응에 관한 연구)

  • CHEON, HYUNGJUN;HAN, GWANGWOO;BAE, JOONGMYEON
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • Greenhouse gas emissions have a profound effect on global warming. Various environmental regulations have been introduced to reduce the emissions. The largest amount of greenhouse gases, including carbon dioxide, is produced in the steel industry. To decrease carbon dioxide emission, hydrogen-based iron oxide reduction, which can replace carbon-based reduction has received a great attention. Iron production generates various by-product gases, such as cokes oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG). In particular, COG, due to its high concentrations of hydrogen and methane, can be reformed to become a major source of hydrogen for reducing iron oxide. Nevertheless, continuous COG cannot be supplied under actual operation condition of steel industry. To solve this problem, this study proposed to use two alternative COG-based fuel mixtures; one with natural gas and the other with biogas. Reforming study on two types of mixed gas were carried out to evaluate catalyst performance under a variety of operating conditions. In addition, methane conversion and product composition were investigated both theoretically and experimentally.

Performance of Cu-SiO2 Aerogel Catalyst in Methanol Steam Reforming: Modeling of hydrogen production using Response Surface Methodology and Artificial Neuron Networks

  • Taher Yousefi Amiri;Mahdi Maleki-Kakelar;Abbas Aghaeinejad-Meybodi
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.328-339
    • /
    • 2023
  • Methanol steam reforming (MSR) is a promising method for hydrogen supplying as a critical step in hydrogen fuel cell commercialization in mobile applications. Modelling and understanding of the reactor behavior is an attractive research field to develop an efficient reformer. Three-layer feed-forward artificial neural network (ANN) and Box-Behnken design (BBD) were used to modelling of MSR process using the Cu-SiO2 aerogel catalyst. Furthermore, impacts of the basic operational variables and their mutual interactions were studied. The results showed that the most affecting parameters were the reaction temperature (56%) and its quadratic term (20.5%). In addition, it was also found that the interaction between temperature and Steam/Methanol ratio is important on the MSR performance. These models precisely predict MSR performance and have great agreement with experimental results. However, on the basis of statistical criteria the ANN technique showed the greater modelling ability as compared with statistical BBD approach.

The Effect by Aqueous NH4OH Treatment on Ru Promoted Nickel Catalysts for Methane Steam Reforming (암모니아 용액 처리에 의한 Ru-Ni/Al2O3 촉매의 메탄 수증기 개질 반응에 미치는 영향)

  • Lee, Jung Won;Jeong, Jin Hyeok;Seo, Dong Joo;Seo, Yu Taek;Seo, Yong Seog;Yoon, Wang Lai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.87-92
    • /
    • 2006
  • The steam reforming of methane over Ru-promoted $Ni/Al_2O_3$ was carried out. Compared with $Ni/Al_2O_3$, which needs pre-reduction by $H_2$, $Ru/Ni/Al_2O_3$ catalysts exhibited relatively higher activity than conventional $Ni/Al_2O_3$. According to $H_2-TPR$ of reduced or used catalysts and $CH_4-TPR$, it was revealed that the reduction of $RuO_x$ by $CH_4$ decomposition begins at a lower temperature ($220^{\circ}C$) and the reduced Ru facilitates the reduction of NiO, and leads to self-activation. To improve metal dispersion, the catalyst was soaked in 7 M aqueous $NH_4OH$ for 2 h at $45^{\circ}C$ while stirring. As a result, $Ru/Ni/Al_2O_3$ catalysts with aqueous $NH_4OH$ treatment have higher activity, larger metal surface area (by $H_2$-chemisorption), and small particle size (by XRD and XPS). It is noted that the amount of noble metal could be reduced by aqueous $NH_4OH$ treatment.

Development of new MCFC application products (MCFC 전략제품 개발)

  • Hwang, Jung Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.129.1-129.1
    • /
    • 2010
  • Since the commencement of the fuel cell business in 2007, POSCO POWER has been the major supplier of the MCFC (Molten Carbonate Fuel Cell), which is the most commercialized stationary fuel cell system in the world. With its quite, yet active movement, more than 20MW MCFC systems have been installed and are operating in Korea. While trying to localize the components and set up a firm supply chain in Korea to provide more reliable and cost-competitive products to its customers, POSCO POWER is also devoting itself to developing new MCFC application products. One such product is a back-up power system, in which a back-up algorithm is embedded to the present system so that the product can work as a back-up generator in case of grid failure. The technology to enhance load following capability of a stack module is also being developed with the back-up algorithm. Another example is a building application, the goal being to make the present Sub-MW product suitable for urban area. For this, downsizing and modularization are the main R&D scope. The project for developing ship service fuel cell for APU application will launch soon as well. In the project, a system which can operate in marine environment, and reforming technology for liquid logistic fuel will be developed.

  • PDF

A comparative study for steam-methane reforming reaction analysis model (수증기-메탄개질반응 해석모델의 비교연구)

  • Choi, Chong-Gun;Jung, Tae-Yong;Dong-Hoon, Shin;Nam, Jin-Hyn;Kim, Yong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1997-2002
    • /
    • 2007
  • The reformer is one of the most important chemical processes for the production of high purity hydrogen from fossil fuel. This study compares zero-dimensional model with CFD models for reaction analysis of methane-steam reformer. The zero-dimensional model is an empirical equation, however CFD model uses reactions of Arrhenius type. Because the reaction coefficients of the steam-methane catalytic reforming have not been reported before in the form of Arrhenius type, the present study aims to find the appropriate reaction coefficients. The used CFD code is Fluent 6.2 version. Several models are compared for the case of various operating temperature, mass of catalyst and steam to methane ratio.

  • PDF

Comparative Performance Analysis of Hybrid PEM Fuel Cell Hybrid Systems (하이브리드 PEM 연료전지 시스템의 성능 비교해석)

  • You, Byung-June;Kim, Tong-Seop;Lee, Young-Duk;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3230-3235
    • /
    • 2007
  • Design performances of various configurations of the PEMFC/GT hybrid systems have been evaluated. Based on PEMFC adopting steam reforming, various system configurations (one ambient pressure configuration and three different pressurized configurations) were designed and their performances were compared. Their Performances are also compared with the reference PEMFC system. Influences of turbine inlet temperature, pressure ratio on the hybrid systems performance were investigated and design ranges exhibits better efficiency than the PEMFC system were presented. One of the pressurized system may have much higher efficiency than the PEMFC system, while other systems hardly provide efficiency upgrade.

  • PDF