• Title/Summary/Keyword: Fuel reforming

Search Result 308, Processing Time 0.029 seconds

The Results of the 125 kW External Reforming Type MCFC Stack Operation (125kW 외부개질 용융탄산염 연료전지(ER MCFC) 스택 운전)

  • Lee, Jung-Hyun;Kim, Beom-Joo;Kim, Do-Hyeong;Kang, Seung-Won;Kim, Eui-Hwan;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.419-424
    • /
    • 2010
  • The 125kW external reforming (ER) type molten carbonate fuel cell (MCFC) system for developing a commercial prototype has been operated at Boryeong thermal power plant site since the end of 2009. The system consists of 125kW stack with $10,000 cm^2$ effective area, mechanical balance of plant (MBOP) with anode recycle system, and electrical balance of plant (EBOP). The 125kW MCFC stack installed in December, 2009 has been operated from January, 2010 after 20 days pre-treatment. The stack open circuit voltage (OCV) was 214V at initial load operation, which approaches the thermodynamically theoretical voltage. The stack voltage remained stable range from 160V to 180V at the maximum generating power of 120 kW DC. The stack has been operated for 3,270 hours and operated at rated power for 1,200 hours.

Optimization of DME Reforming using Steam Plasma (수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구)

  • Jung, Kyeongsoo;Chae, U-Ri;Chae, Ho Keun;Chung, Myeong-Sug;Lee, Joo-Yeoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In today's global energy market, the importance of green energy is emerging. Hydrogen energy is the future clean energy source and one of the pollution-free energy sources. In particular, the fuel cell method using hydrogen enhances the flexibility of renewable energy and enables energy storage and conversion for a long time. Therefore, it is considered to be a solution that can solve environmental problems caused by the use of fossil resources and energy problems caused by exhaustion of resources simultaneously. The purpose of this study is to efficiently produce hydrogen using plasma, and to study the optimization of DME reforming by checking the reforming reaction and yield according to temperature. The research method uses a 2.45 GHz electromagnetic plasma torch to produce hydrogen by reforming DME(Di Methyl Ether), a clean fuel. Gasification analysis was performed under low temperature conditions ($T3=1100^{\circ}C$), low temperature peroxygen conditions ($T3=1100^{\circ}C$), and high temperature conditions ($T3=1376^{\circ}C$). The low temperature gasification analysis showed that methane is generated due to unstable reforming reaction near $1100^{\circ}C$. The low temperature peroxygen gasification analysis showed less hydrogen but more carbon dioxide than the low temperature gasification analysis. Gasification analysis at high temperature indicated that methane was generated from about $1150^{\circ}C$, but it was not generated above $1200^{\circ}C$. In conclusion, the higher the temperature during the reforming reaction, the higher the proportion of hydrogen, but the higher the proportion of CO. However, it was confirmed that the problem of heat loss and reforming occurred due to the structural problem of the gasifier. In future developments, there is a need to reduce incomplete combustion by improving gasifiers to obtain high yields of hydrogen and to reduce the generation of gases such as carbon monoxide and methane. The optimization plan to produce hydrogen by steam plasma reforming of DME proposed in this study is expected to make a meaningful contribution to producing eco-friendly and renewable energy in the future.

A Comparative Study of Commercial Catalysts for Methanol Steam Reforming (메탄올 수증기 개질반응에서의 상용촉매 비교연구)

  • Park, Jung-Eun;Park, Jae-Hyun;Yim, Sung-Dae;Kim, Chang-Soo;Park, Eun-Duck
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • The comparison work was conducted for the methanol steam reforming among commercial Cu-based catalysts, viz. ICI-M45, which is for the methanol synthesis, MDC-3 and MDC-7, which are for the water-gas shift reaction. The catalytic activity for the water-gas shift reaction was also compared over three catalysts. Among them, MDC-7 showed the highest methanol conversion and formation rate of hydrogen and carbon dioxide at 473 K for the methanol steam reforming. To find out any promotional effect between ICI-M45 and MDC-7, three different packing methods with these two catalysts were examined. However, no synergistic effect was observed. The catalytic activity for watergas shift reaction decreased in the following order: MDC-7 > MDC-3 > ICI-M45. The highest activity of MDC-7 for the methanol steam reforming as well as the water-gas shift reaction can be due to its high surface area, copper dispersion, and an adequate Cu/Zn ratio.

An Experimental Study on Catalytic Reformer with Direct Spraying of Fuel and Water for SOFC (고체산화물 연료전지용 연료.물 직접 분무식 촉매 개질기에 관한 실험적 연구)

  • Lee, Dae-Keun;Dong, Sang-Geun;Yang, Je-Bok;Kim, Hak-Joo;Jung, Heon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.260-265
    • /
    • 2006
  • An experimental study on the catalytic reformer adopted in the auxiliary power unit system of solid oxide fuel cell was conducted. A 3-fluid nozzle, by which liquid fuel such as diesel, water and air are sprayed and uniformed mixed, was designed and used in this study. An electrically heated monolith inserted in the reformer was used for the vaporization of fuel and water in the transient state of reformer. The reformer uses the partial oxidizing reaction at the catalyst and the supply of water prevents the flame combustion in the spraying zone and lessens the deactivation of catalyst. The result showed that the reforming of liquid fuel can be started by the electrically heated monolith and the 3-fluid nozzle can give the uniform mixing of fuel, water and air. It was also found that the reformer fueled by n-hexadecane can make the reformate, at best, containing $H_2$ at 15.5% and CO at 11.5% that are used as fuel in the solid oxide fuel cell.

  • PDF

Preliminary study and development of $kW_e$-class liquid fuel based SOFC system (액상 연료 용 $kW_e$급 SOFC 시스템 사전 연구 및 개발)

  • Yoon, Sang-Ho;Kim, Sun-Young;Bae, Joong-Myeon;Baek, Seung-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-24
    • /
    • 2008
  • We have developed a $kW_e$ class liquid fuel based solid oxide fuel cell (SOFC) system. Our final target is to develop the 1 $kW_e$ diesel based SOFC system for residential power generator(RPG). In this study, we present the conceptual design of SOFC system. System is composed of hot-box and cold-box. Planar typed SOFC stack, heat exchanger, combustor for stack tail gas, and fuel processor, such as fuel reformer and desulfurizer, are contained in the hot-box. And several balance of plants(BOP), such as fuel suppliers and controller, are contained in the cold-box. Before the SOFC system fabrication, we have already operated the selfsustaining fuel processor, and heat exchange of all heat-related components is simulated using ASPEN HYSYS, because heat maintenance and management in hot-box are important for stable operation of SOFC system. The self-sustained fuel processor was successfully operated for about 250 hours, and heat exchange is enough to operate the SOFC system.

  • PDF

Development of a 50W Powered Ceramic Micro Reformer Equiped with PROX Reactor (PROX 반응기가 있는 50W급 세라믹재질의 소형 reformer 개발)

  • Chung C.H.;Kim W.J.;Oh J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.225-229
    • /
    • 2005
  • We have designed micro-fuel processor system, which consists of a steam reforming area and a PROX(preferential oxidation) area. Micro-fuel processor system generates $H_2$ rich gas from a methanol. In our experiment, we have integrated micro-fuel processor system using low temperature cofired ceramics (LTCC) process because LTCC is superior to other materials principally due to their high thermal and chemical stability, simpler fabrication processes, and lower materials cost. Therefore, we have studied and integrated micro-fuel processor system containing embedded heaters, cavities, and 3D structures of micro-channel with LTCC. Also we have optimized the LTCC process.

  • PDF

A Practical Design of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems (가압형 고체산화물 연료전지/가스터빈 하이브리드 시스템의 현실적 설계)

  • Oh, Kyong-Sok;Park, Sung-Ku;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.125-131
    • /
    • 2007
  • This paper presents guideline for a practical design of the hybrid system combining a pressurized solid oxide fuel cell and a gas turbine. Design of the hybrid system based on a virtually designed gas turbine was simulated using models for off-design operation of the gas turbine. Two system configurations, with different method for supplying reforming steam, are considered and their design characteristics are compared. A higher design cell temperature provides better system performance. However, there exists a maximum allowable design cell temperature because the operating point of the compressor approaches the surge point with increasing fuel cell temperature. Increased pressure loss at the fuel cell moves the compressor operating point toward the surge point and reduces system performance.

A Study on the Efficiency Enhancement of the HT-PEMFC Having Fuel Processing System by Connecting Adsorption Chilling System (흡착식 냉방 시스템을 이용한 수소개질/연료전지 시스템의 효율향상)

  • NASEEM, MUJAHID;KIM, CHUL-MIN;LEE, SANGYONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.411-417
    • /
    • 2019
  • An adsorption chiller is connected to the fuel processing/fuel cell system to increase the energy efficiency of the system. Since, the minimum temperature of $70^{\circ}C$ is needed to operate the adsorption chiller, HT-PEMFC is used as a heating source and $80^{\circ}C$ hot water in the water tank at the system is supplied to the chiller. Experimentally measured COP of the adsorption chiller was between 0.4-0.5 and the total calcuated efficiency of the connected system was between 60% and 70% comparing to 47% without adsorption chilling system.

Effect of Carbon Dioxide in Fuel on the Performance of PEMFC (연료중의 이산화탄소 불순물에 의한 고분자전해질연료전지의 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jun-Taek;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2008
  • Even though fuel cell have high efficiency when pure hydrogen from gas tank is used as a fuel source, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, $CH_4$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of the electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. This study is aimed at investigating the effect of carbon dioxide on fuel cell performance. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run(10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography(GC).

Numerical Analysis of New Proposals to Enhance Heat Transfer in MCFC'S Preconverter (열전달 향상을 위한 새로운 MCFC 연료전지용 프리컨버터의 수치해석)

  • Sohn, Chang Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.753-758
    • /
    • 2013
  • In this study, two proposals for the wall heating preconverter of an MCFC are numerically studied to resolve hot temperature generation near the wall by the low thermal conductivity of the catalyst. The numerical results show that the inserted porous cupper plates on the catalyst evidently improve heat transfer and realize more uniform reforming in the preconverter. The calculated results for the preconverter with a circumference empty space of catalyst located at center, 1/2 and 4/5 from center line are compared. The circumference empty space located at 1/2 position shows better results than other cases, but the positive effect on the uniform reforming process is less than in the case of inserted cupper porous plates on the catalyst.