DOI QR코드

DOI QR Code

Numerical Analysis of New Proposals to Enhance Heat Transfer in MCFC'S Preconverter

열전달 향상을 위한 새로운 MCFC 연료전지용 프리컨버터의 수치해석

  • 손창현 (경북대학교 기계공학부)
  • Received : 2013.01.14
  • Accepted : 2013.06.03
  • Published : 2013.08.01

Abstract

In this study, two proposals for the wall heating preconverter of an MCFC are numerically studied to resolve hot temperature generation near the wall by the low thermal conductivity of the catalyst. The numerical results show that the inserted porous cupper plates on the catalyst evidently improve heat transfer and realize more uniform reforming in the preconverter. The calculated results for the preconverter with a circumference empty space of catalyst located at center, 1/2 and 4/5 from center line are compared. The circumference empty space located at 1/2 position shows better results than other cases, but the positive effect on the uniform reforming process is less than in the case of inserted cupper porous plates on the catalyst.

본 연구는 MCFC용 벽면가열 방식 프리컨버터의 낮은 열전도율 때문에 발생하는 벽면 고온 발생 문제를 해결하기 위한 두 가지 방안을 수치해석을 통해 연구하였다. 프리컨버터 내부에 열전도율이 높은 다공성판을 설치한 경우 벽면에서 중심부위로 열전달이 향상되어 수소 생성이 벽면부위에 국한되지 않고 촉매내부에 좀 더 균일하게 발생되는 것을 확인하였다. 그리고 촉매 내부에 일정한 두께의 빈 공간을 중심, 1/2 그리고 4/5 위치에 두고 해석하여 결과를 비교하였고, 1/2위치의 빈 공간이 다른 경우에 비해 연료전환이 보다 이상적인 경우에 근접하지만 열전도율이 높은 다공성판의 설치가 보다 효과적임을 확인하였다.

Keywords

References

  1. O'ayre, R., Cha, S-W., Colella, W. and Prinz, F.B., 2006, "Fuel Cell Fundamentals," John Wiley & Sons, pp. 292-306.
  2. Larminie, J. and Dicks, A., 2003, "Fuel Cell System Explained, Second Edition," John Wiley & Sons, pp. 229-279.
  3. Park, J. G., Lee, S. K., Lim, S. W. and Bae, J. M., 2008, "Numerical Study on Correlation Between Operating Parameters and Reforming Efficiency for a Methane Autothermal Reformer," Trans. Korean Soc. Mech. Eng. B, Vol. 32, No.8, pp.636-644. https://doi.org/10.3795/KSME-B.2008.32.8.636
  4. Park, J. G., Lee, S. K., Lim, S. W. and Bae, J. M., 2009, "Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane," Trans. Korean Soc. Mech. Eng. B, Vol. 33, No.1, pp.60-67. https://doi.org/10.3795/KSME-B.2009.33.1.60
  5. Byun, D. H. and Sohn, C. H., 2011, "Numerical Study of Stream Reformer and Preconverter for MCFC," KSCFE, Vol.16, No.1, pp. 42-47. https://doi.org/10.6112/kscfe.2011.16.1.042
  6. Byun, D. H. and Sohn C. H., 2012, "Numerical Analysis of Heat Transfer and Fuel Conversion for MCFC Proconverter," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 4, pp. 425-430. https://doi.org/10.3795/KSME-B.2012.36.4.425
  7. 2009, "CFD-ACE+ V2009.2 User Manual," ESI CFD Inc.
  8. Gurau, V., Liu, H. and Kakac, S., 1998, "Two-Dimensional Model for Proton Exchange Membrane Fuel Cells." AiChE Journal; Vol. 44, No. 11, pp. 2410-2422. https://doi.org/10.1002/aic.690441109
  9. Xu, J. and Froment, G.F., 1989, "MethaneSteam Reforming, Methanation and Water-Gas Shift I. Intrinsic Kinetics," J. of AiChE, Vol.35, No.1, pp. 88-96. https://doi.org/10.1002/aic.690350109