• Title/Summary/Keyword: Fuel property

Search Result 378, Processing Time 0.028 seconds

Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding

  • Choi, Gyeong-Ha;Shin, Chang-Hwan;Kim, Jae Yong;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2312-2322
    • /
    • 2021
  • In recent studies, the creep rate of Zircaloy-4, one of the basic property parameters of the nuclear fuel code, has been commonly used with the axial creep model proposed by Rosinger et al. However, in order to calculate the circumferential deformation of the fuel cladding, there is a limitation that a difference occurs depending on the anisotropic coefficients used in deriving the circumferential creep equation by using the axial creep equation. Therefore, in this study, the existing axial creep law and the derived circumferential creep results were analyzed through a circumferential creep test by the internal pressurization method in the isothermal conditions. The circumferential creep deformation was measured through the optical image analysis method, and the results of the experiment were investigated through constructed IDECA (In-situ DEformation Calculation Algorithm based on creep) code. First, preliminary tests were performed in the isotropic β-phase. Subsequently in the anisotropic α-phase, the correlations obtained from a series of circumferential creep tests were compared with the axial creep equation, and optimized anisotropic coefficients were proposed based on the performed circumferential creep results. Finally, the IDECA prediction results using optimized anisotropic coefficients based on creep tests were validated through tube burst tests in transient conditions.

Influences of B Number Effect on the Burning Rate of Solid Fuel in Single Port Hybrid Rocket (Single Port 하이브리드 로켓의 고체연료 물질전달수(B Number)를 고려한 연소특성 연구)

  • Lee, Jung-Pyo;Kim, Soo-Jong;Yoo, Woo-June;Cho, Sung-Bong;Moon, Hee-Jang;Kim, Jin-Kon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.264-270
    • /
    • 2008
  • Most of burning rate models used in hybrid combustion depend solely on oxidizer flux. But this empirical relation can not represent well the important effect of the thermo-chemical properties of solid fuel and thereby requires different value of empirical exponent and constant for each fuel considered. In this study, a new burning rate correlation was proposed using the mass transfer number(B number) which encompasses the thermochemistry effect of solid fuel and the aerodynamic effect caused by the combustion on the solid fuel surface where the effect of aerodynamic property in the mass transfer number was studied. The PMMA, PP, and PE were chosen as fuel, and gas oxygen as oxidizer. The new empirical burning rate expression depending on both the oxidizer flux and the mass transfer number was able to predict the burning rate of each fuel with just a single exponent value and constant, and it was found that the aerodynamic effect on the blowing effect did show a minor effect on the burning rate correlation.

Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.155-170
    • /
    • 2012
  • Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

An Experimental Analysis for System Optimization to Reduce Smoke at WOT with Low Volatile Fuel on Turbo GDI Engine (저 기화성 연료를 사용한 직접분사식 과급 가솔린엔진에서 전 부하 스모크 저감을 위한 시스템 최적화에 관한 연구)

  • Kim, Dowan;Lee, Sunghwan;Lim, Jongsuk;Lee, Seangwock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.97-104
    • /
    • 2015
  • This study is a part of the high pressure injection system development on the Turbo GDI engine in order to reduce smoke emission in case of using the low volatile(high DI) fuel which is used as normal gasoline fuel in the US market. Firstly, theoretical approach was done regarding gasoline fuel property, performance, definition of particle matters and its creation as well as problems of the high DI fuel. In this experimental study, 2L Turbo GDI engine was selected and optimized system parameter was inspected by changing fuel, fuel injection mode (single/multiple), fuel pressure, distance between injector tip and combustion chamber, start of injection, intake valve timing in engine dyno at all engine speed range with full load. In case of normal gasoline fuel, opacity was contained within 2% in all conditions. On the other hands, in case of low volatile fuel (high DI fuel), it was confirmed that the opacity was rapidly increased above 5,000 rpm at 14.5 ~ 20 MPa of fuel pressure and there were almost no differences on the opacity(smoke) between 17 MPa and 20 MPa fuel pressure. According to the SOI retard, smoke decrease tendency was observed but intake valve close timing change has almost no impact on the smoke level in this area. Consequently, smoke decrease was observed and 16% at 6000rpm respectively with injector washer ring installed. By removing injector washer to make injector tip closer to the combustion chamber, smoke decrease was observed by 46% at 5,500 rpm, 42% at 6,000 rpm. It is assumed that the fuel injection interaction with cylinder head, piston head, intake and exhaust valve is reduced so that impingement is reduced in local area.

Gas diffusion electrode containing sulfonated poly(ether sulfone) as ionomer for polymer electrolyte fuel cells (Sulfonated poly(ether sulfone)을 함유한 고분자 전해질 연료전지용 기체 확산 전극에 관한 연구)

  • Ryu, Sung Kwan;Choi, Young Woo;Yang, Tae Hyun;Yim, Sung Dae;Kim, Han Sung;Kim, Chang Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • Polymer electrolyte fuel cells (PEFCs) have received a lot of attention as a power source for both stationary and mobile applications due to their attractive feature. In general, the performance of PEFCs is highly affected by the property of the electrodes. A PEFC electrode essentially consists of a gas diffusion layer and a catalyst layer. The gas difusion layer is highly porous and hydrophobicized with PTFE polymer. The catalyst layer usually contains electrocatalyst, proton conducting polymer, even PTFE as additive. Particularly, the proton conducting ionomer helps to increase the catalytic activity at three-phase boundary and catalyst utilization. Futhermore, it helps to retain moisture, resulting in preventing the electrodes from membrane dehydration. The most widely used proton conducting ionomer is perfluorinated sulfonic acid polymer, namely, Nafion from DuPont due to its high proton conductivity and good mechanical property. However, there are great demands for alternative ionomers based on non-fluorinated materials in terms of high temperature availability, environmental adaptability and production cost. In this study, the electrodes with the various content of the sulfonated poly(ether sulfone) ionomer in the catalyst layer were prepared. In addition, we evaluated electrochemical properties of the prepared electrodes containing the various amount of the ionomers by using the cyclic voltammetry and impedance spectroscopy to find an optimal ionomer composition in the catalyst layer.

  • PDF

Evaluation of Microstructural and Mechanical Property of Medium-sized HT9 Cladding Forged Material for Sodium-cooled Fast Reactor (소듐냉각고속로 피복관용 중형 HT9 단조품 소재의 미세조직 및 기계적 특성 평가)

  • Kim, Jun-Hwan;Lee, Kang-Soo;Kim, Sung-Ho;Lee, Chan-Bock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • Microstructural and mechanical property were evaluated at the medium-sized HT9 (12Cr-1MoWV) forged steel which was considered as primary candidate for the fuel cladding in sodium-cooled fast reactor (SFR). Material was forged at $1170^{\circ}C$ after the induction melting to make round bar as 160mm diameter, 7000mm length then the radial distribution of microstructure as well as microhardness was evaluated. The results showed that overall microstructure exhibited as ferrite-martensite structure, where small amount (2~3%) of delta ferrite was formed throughout the specimen and maximum 15% of transformed ferrite was formed at the center, where it gradually decreased toward the radial direction. Sensitivity analysis of the cooling curve and Time-Temperature-Transformation (TTT) diagram revealed that formation of transformed ferrite could be avoided when the diameter was decreased down to 120mm.

Microstructural and Wear Properties of WC-based and Cr3C2-based Cermet Coating Materials Manufactured with High Velocity Oxygen Fuel Process (고속 화염 용사 공정으로 제조된 WC계 및 Cr3C2계 Cermet 코팅 소재의 미세조직 및 마모 특성)

  • Kang, Yeon-Ji;Ham, Gi-Su;Kim, Hyung-Jun;Yoon, Sang-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.408-414
    • /
    • 2018
  • This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are $1{\pm}0.5%$ for all three specimens. Microstructural analysis confirms the formation of second carbide phases of $W_2C$, $Co_6W_6C$, and $Cr_7C_3$ owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of $W_2C$ phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the $Cr_3C_2-20CrNi$ coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of $Cr_3C_2-20NiCr$, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide-binder and binder-binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.

The Study on the improvement of vehicle fuel economy test method according to the characteristics of test fuel (시험용 연료 특성에 따른 자동차 연비측정 방법 개선에 관한 연구)

  • Lee, Minho;Kim, Jeonghwan
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.9-18
    • /
    • 2014
  • These test methods, the current domestic vehicles fuel economy calculation method is tested on a dynamometer for vehicles after you have installed the vehicle, given the test mode(FTP-75 & HWFET mode, etc.) are measured by vehicle emissions and fuel economy by seeking to have the results approach, the carbon balance method. At this point, using the carbon balance method is a test method was developed seeking fuel for a standard fuel properties, where the value of the constant and saved test was measured in THC, CO, $CO_2$ has a value calculation. Therefore, use fuel which is changed every time you test the fuel properties characteristics are not considered exactly. In this study, using the carbon balance method and fluid flow rate of the fuel used in the actual test is measured by comparing the results with the flow measurement methods, properties of the fuel used for the test attribute to study ways that can be considered, taking into account the physical attributes of a more diverse fuel line and fuel economy improved measurement methods that can be reviewed.

A Study on Evaluation of Oxidation Degradation of Bidiesel and Biodiesel Blended Fuel Distributing in Domestic (국내 유통 바이오디젤 및 바이오디젤 혼합연료의 산화열화 연구)

  • Min, Kyong-Il;Yim, Eui Soon;Na, Byung-Ki;Jung, Choong-Sub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.135-143
    • /
    • 2013
  • In this study, we suggested effective countermeasure of biodiesel oxidation problems by investigating the oxidation degradation of biodiesels derived from variable resources and the level of oxidation stability of current distributing biodiesel blended fuels (2%) in Korea, and oxidation stability change according to storage time (for 3 month) and biodiesel blending ratio (2, 5, 7, 10%). By the composition analysis results of biodiesel from various resources which are possible to distribute in Korea, the biodiesel from animal fat has poor oxidation stability and cold performance, while the biodiesel from coconut and palm kernel which are considered as future potential raw material showed good oxidation stability and cold performance. The oxidation stability level of current distributing biodiesel blended fuels in Korea was excellent with showing over 30 hours (average 68 hours) stability, but the oxidation stability of the blended fuel with animal fat biodiesel having poor oxidation property (1.22 hours) was rapidly decreased to below 32 hours by mixing only 2%. Therefore, we have to pay attention to quality control of oxidation property, because the oxidation stability problem can be caused by increasing biodiesel blending ratio and diversifying raw materials those have worse property.

A Study on the Combustion of Blended Fuel Oil in a Diesel Engine for Small-Sized Fishing Boat (소형 어선용 디이젤 기관의 혼합연료유 연소에 관한 연구)

  • Go, Dae-Gwon;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.72-79
    • /
    • 1987
  • In this paper, an investigation of the property of blended fuel oil, combustion characteristics and engine performance was made, in case blended fuel oil(light oil+heavy oil) was used in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The specific gravity was linearly increased in accordance with the increase in heavy oil ratio in blended fuel oil, and the relationship between viscosity and temperature was coincided with the formula of Walther-ASTM, and the CCAI, the ignition quality index, was increased nearly as a straight line of the gradient 1.0. 2. The ignition delay was slightly increased below 810 of CCAI(blending ratio to be 60% of heavy oil), but remarkably increased above 810 of CCAI. Therefore, it was considered that the practicable value of CCAI, ignition quality of blended fuel oil, was more than 810. 3. The maximum combustion pressure was increased until blending ratio of heavy oil was raised up to 40%. On the contrary, it came to be decreased at that ratio, with smoke emissions remarkably increasing above 60%. Therefore, it was found in this experiment that the best practicable limit of heavy oil blending ratio was around 50% for saving fuel costs with least smoke emissions.

  • PDF