• Title/Summary/Keyword: Fuel oil(B-C)

Search Result 32, Processing Time 0.022 seconds

An Experimental Study on the Combustion Characteristics of Wastewater-Emulsion Fuel (Emulsion(B.C유+폐수)연료의 연소효율에 관한 실험적 연구)

  • 정진도
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2003
  • Emulsion fuel is a very attractive fuel because of its energy saving and pollution prevention properties. We investigated and compared the combustion efficiency of B-C oil and emulsion fuel i.e. fuel made from the mixture of B-C oil and waste water. By installing an R-type thermocouple and an optical pyrometer on each side of the boiler, and by placing a combustion analyzer at the point of gas emissions, We were able to measure and compare each flame temperature, combustion rate and the concentration of emitted gas when B-C oil and emulsion fuel are burned. The following results were obtained: The flame temperature of emulsion fuel at the front and rear of the boiler is about 50$^{\circ}C$ lower than the flame temperature of B-C oil. The reason for this difference in temperature is that both latent and sensible heat is lost due to the moisture in the waste water of emulsion fuel. An analysis of emitted gases shows that when emulsion fuel is used polluting substances decrease also the concentration of CO becomes considerably lower. The combustion efficiency for B-C oil and emulsion fuel is 85.5% and 84.8% respectively.

Lubrication Characteristics in Fuel Injection Pump with Variation of Fuel Oils (연료 변경에 의한 연료분사펌프의 윤활 특성)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.245-250
    • /
    • 2015
  • This study investigates the lubrication characteristics of fuel injection pumps with reference to different fuel oils. Medium-speed diesel engines use fuel oils with various viscosities, such as heavy fuel oil (HFO, which is a high-viscosity fuel oil) and light diesel oil (LDO, which is a low-viscosity fuel oil). When fuel oil with a low viscosity is used, both fuel oil and lubricating oil lubricate the system. Thus, the lubrication of the fuel injection pump is in a multi-viscosity condition when the fuel oil in use changes. We suggest three cases of multi-viscosity models, and divide the fuel injection pump into three lubrication sections: a, the new oil section; b, the mixed oil section; and c, the used oil section. This study compares the lubrication characteristics with variation of the multi-viscosity model, clearance. The volume of Section b does not affect the lubrication characteristics. The lubrication characteristics of the fuel injection pump are poor when high-viscosity fuel oil transfers to low-viscosity fuel oil. This occurs because the viscosity in the new oil section (i.e., Section a) dominates the lubrication characteristics of the fuel injection pump. However, the lubricant oil supply in the used oil section (i.e., Section c) can improve the lubrication characteristics in this condition. Moreover, the clearances of the stem and head significantly influence the lubrication characteristics when the fuel oil changes.

A study on the viscosity-temperature characteristics of the emulsified heavy fuel oils (유화중유의 점도-온도특성에 관한 연구)

  • 전대희;김기준;이상태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.15-21
    • /
    • 1983
  • Preparing for treatment and management of the emulsified fuel oil which will be generalized henceforth, this paper is an attempt to examine the viscosity-temperature characteristics of emulsified heavy fuel oil which is mixed with water and emulsifier in various mixture ratio by mechanical mixer. The experimental results are summarized as follows: 1. The viscosity-temperature characteristics of the emulsified C & B grade heavy fuel oil mixed with water of same or less weight, is changed according to log.log(v+0.6)=b-3.8log T. 2. The emulsifier has to be added to the emulsified A grade heavy fuel oil mixed with water of same or less weight, because it is instable. Especially if the emulsifier is sodium stearate, it is added more than 0.3% of the weight of oil and water. 3. In the emulsified A grade heavy fuel oil mixed with water and emulsifier, the higher the ratio of water addition becomes, the higher the viscosity is and the more the viscosity-temperature slope decreases. But the higher the ratio of emulsifier addition is, the more the viscosity-temperature slope increases. In this case, the linearity of viscosity-temperature characteristic curve is poorer than that of B and C grade heavy fuel oil. 4. In the emulsified A grade heavy fuel oil mixed with emulsifier of 0.3% or less, the emulsion type is O/W type when water addition ratio is 40%, but it is W/O type when it is 10%, 20%, 30% and 50%.

  • PDF

A Study on the Storage Stability and Malodor of Bio-Fuel oil (바이오중유의 저장안정성 및 악취특성 연구)

  • JANG, EUN-JUNG;PARK, CHEON-KYU;LEE, BONG-HEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.712-720
    • /
    • 2017
  • As Korean government has activated the renewable portfolio standard (RPS) since 2012, producers have been seeking and using the various renewable resources to meet the RPS quota. One of these efforts, Power Bio-Fuel oil demonstration project is being conducted to check the operability and compatibility with fossil fuel, Fuel oil (B-C) from 2014. The oil is a mixture of vegetable oil and animal fat or fatty acid ester of them and should satisfy some specification to use the power generation. The oil's quality and combustion characteristics are different from conventional oil, Fuel oil (B-C) in current power plant facility. In this study, it was investigated the storage stability and malodor intensity of Bio-Fuel oil.

A Study on the Combustion Characteristics of Petrochemical Process By-Product (석유화학 공정부산물의 연소특성에 대한 연구)

  • Lee, Yong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1578-1584
    • /
    • 2002
  • Combustion stability is one of the most important factors that must be considered in burning of heavy fuel oil, especially low-grade oil. This paper describes the combustion characteristics of petrochemical process by- product in the combustion furnace of heavy fuel oil. Main experimental parameters were combustion load, excess 02, fuel preheating temperature and air/fuel ratio. The capacity of CRF(combustion research facility) used in this study was 1.0 ton/hr and the burner is steam jet type suitable far heavy oil combustion and manufactured by UNIGAS in Italy. The fuel used in this experiment were 0.5 B-C, petrochemical process by-product and 3 kinds of 0.5 B-C/process by-product mixtures. The combustion stability was monitored and exhaust gases such as CO, NOx, SOx and particulates were measured with the excess $O_2$ and combustion load. The main purpose of this study is to clarify whether process by-product can be used as a boiler fuel or not in consideration of flame stability and emission properties.

An Evaluation on the Combustion Characteristics of Heavy Oil-Water Emulsions (중질유-물 유화연료의 연소특성 평가)

  • Lee, Yong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1722-1728
    • /
    • 2002
  • Most researches regarding emulsified fuel were in the areas of emulsifier, emulsified fuel manufacturing and emulsified fuel droplet combustion, but there were little papers published regarding emulsified fuel combustion and boiler efficiency in an industrial boiler. The main purpose of this study is to clarify whether improvements in the boiler efficiency and the reduction of pollutants such as CO, NOx, SOx and smoke exist or not when emulsified fuels are combusted in the commercial boiler. Main experimental parameters were water content in heavy oil , excess $O_2$, and boiler load. The fuels used in this experiment were 0.5 B-C, and 5 kinds of 0.5 B-C/water emulsified fuels. The combustion characteristics of heavy oil and its emulsions with water were investigated in an industrial boiler. The combustion stability was monitored and exhaust gases such as CO, NOx, SOx and smoke were measured with excess $O_2$ and combustion load. In case of emulsified fuel combustion, flame stability was poor and boiler efficiency was lowered by 1.6~5.7%, but emission levels of CO and smoke were improved.

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

A Study on Characteristics of Emulsified Fuel (유화연료의 특성에 관한 연구)

  • Jung, J.S.;Kim, J.J.;Lee, K.B.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.105-110
    • /
    • 1999
  • The elementary experiment was performed to develop the emulsified fuel production system using pressure injection nozzle in this study. The stabilities and characteristics of emulsified fuel which is produced through direct spray of water via pressure injection nozzle into oil are examined. To understand performance of emulsion production, stabilities of emulsified fuel which is made by adding water to the mixed fuel of Bunker-C and 10 $^{\sim}$ 50 vol% of heating oil were investigated. According to volume ratios of surfactant in heating oil the stability and SMDs were measured

  • PDF

Power and Emission Characteristics of DI Diesel Engine with a Soybean Bio-diesel Fuel (바이오디젤유를 사용한 직접분사식 디젤엔진의 출력성능 및 배출가스 특성)

  • Choi, B.C.;Lee, C.H.;Park, H.J.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.11-16
    • /
    • 2002
  • This paper describes the power performance and emission characteristics of the high speed direct injection diesel engine (2.9 litter displacements) driven by soybean oil asknown a bio diesel fuel. The results were compared to diesel fuel with blending bio diesel fuels. The soybean bio diesel fuel was added in the diesel fuel in concentration varying from 25% to 75% volume rates. We measured the emissions according to ECE 13 mode and full load, fixedengine speed. When the 25% bio diesel fuel was used, NOx emission at the ECE 13 mode test slightly decreased compared with diesel base engine. Over engine speed of 2000 rpm, the level of unburned hydrocarbon(HC) and carbon monoxide(CO) were the same to the diesel engine. Smoke emission decreased asthe blending bio diesel fuel rate increased.

  • PDF

A Study on the Quality Characteristic of Power Bio-Fuel Oil for Alternative Fuel oil (중유 대체연료로서 발전용 바이오중유의 품질특성 연구)

  • Jang, Eun-Jung;Park, Jo-Yong;Min, Kyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.562-571
    • /
    • 2014
  • In these days, many countries carry out many renewable energy policies to increase the renewable energy portion and to reduce the GHG(Green House Gas). In Korea, RPS(Renewable Portfolio Standards) focused on over 500MW power producers is conducting. And they are using the bio-fuel oil to meet their RPS quota. The oil is a mixture of animal and vegetable fat or fatty acid ester of them and should satisfy some specifications to use the power generation such as viscosity, pour point, acid number. Depends on the raw materials, quality characteristics of power bio-fuel oil are changed. By adding the power bio-fuel oil, pour point, density, sulfur content and viscosity are decreased and acid number, iodine number, oxygen content are increased. In this study, we test the quality characteristic of power bio-fuel oil and the property changes by the blending ratio of power bio-fuel oil & conventional fuel oil.