• Title/Summary/Keyword: Fuel oil& #40;B-C& #41;

Search Result 1, Processing Time 0.019 seconds

Performances of the Used Frying Oil on a Small Diesel Engine (폐식용유를 이용한 소형 디젤기관의 성능)

  • 김성태;정형길;김영복
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.209-220
    • /
    • 2001
  • This study was carried out to investigate the usability of the used frying oil, which was extracted from soybean, as one of the alternative fuel of a small diesel engine. For the experiment, NO. 2 diesel oil [D], used frying oil [UF], and their volumetric blends were applied and analysis of the properties and compositions of the experimental fuels were conducted. A four cycle diesel engine with single cylinder, water cooling system, maximum output 8.1 ㎾/2,200 rpm was selected and a direct injection chamber and a precombustion chamber were attached alternately. The results obtained were as follows: 1. Engine power (BHP) were increased from 4.13~4.27㎾ to 9.08~9.15㎾ for diesel oil, from 4.05~4.19㎾ to 8.44~8.92㎾ for UF, and from 4.01~4.48㎾ to 8.69~9.16㎾ for blend fuel, as the engine speed increased from 1,000 rpm to 2,200 rpm. The BHP in case of the direct combustion chamber were fluctuated higher than those of the pre-combustion chamber. 2. With the engine speed increased, torque of the engine were increased from 39.50~40.80 N.m to 42.89 N.m, then decreased to 39.44~39.77 N.m for diesel oil, and increased from 38.73~40.04 N.m to 40.12~40.82 N.m then decreased as 36.53~38.76 N.m for UF. Torque of the blend fuels were increased from 38.75~41.76 N.m to 40.47~42.89 N.m then decreased to 37.73~39.78 N.m. There is no significant difference of torque between the type of combustion chambers. 3. The specific fuel consumption of the UF was increased about 20 percent depending on the engine speed variations. And in case of direct injection chamber, about 12 percent lower fuel consumption was observed than that of precombustion chamber. 4. NOx emission of the UF was higher than that of diesel oil at above 1,800rpm of the engine speed. In case of the direct injection chamber, NOx emission was revealed higher about 59 percent than that of the precombustion chamber, depending on the range of the engine speeds. 5. Smoke emission was decreased in case of UF compared with diesel oil on direct injection chamber. When using precombustion chamber smoke emission was a little higher than that of the direct injection chamber were showed at the engine speed range. 6. At all the engine speed range, exhaust gas temperatures were decreased 2~3$^{\circ}C$ for UF used engine compared with those of the diesel oil. The exhaust gas temperature of the direct injection chamber was higher than that of the precombustion chamber by 72$^{\circ}C$. 7. Unburnt materials remained in the cylinder in case of the pre-combustion chamber was smaller and softer than that of the direct combustion chamber. 8. The feasibility of the blend fuel B-1 and B-2 were verified as a direct combustion chamber was attached to the diesel engine, with respect to the power performance of the engine.

  • PDF